Solveeit Logo

Question

Mathematics Question on Sequence and series

If nC4,nC5^nC_4,\, ^nC_5 and nC6^nC_6 are in A.P.A.P., then nn is

A

7 or 14

B

7

C

14

D

14 or 21

Answer

7 or 14

Explanation

Solution

Since, nC4,nC5{ }^{n} C_{4},{ }^{n} C_{5} and nC6{ }^{n} C_{6} are in AP
2nC5=nC4+nC6\therefore 2{ }^{n} C_{5}={ }^{n} C_{4}+{ }^{n} C_{6}
2×n!5!(n5)!=n!4!(n4)!+n!(n6)!6!\Rightarrow 2 \times \frac{n !}{5 !(n-5) !}=\frac{n !}{4 !(n-4) !}+\frac{n !}{(n-6) ! 6 !}
25(n5)=1(n4)(n5)+130\Rightarrow \frac{2}{5(n-5)}=\frac{1}{(n-4)(n-5)}+\frac{1}{30}
25(n5)=30+n29n+2030(n4)(n5)\Rightarrow \frac{2}{5(n-5)}=\frac{30+n^{2}-9 n+20}{30(n-4)(n-5)}
12(n4)=n29n+50\Rightarrow 12(n-4)=n^{2}-9 n+50
n221n+98=0\Rightarrow n^{2}-21 n+98=0
(n14)(n7)=0\Rightarrow(n-14)(n-7)=0
n=7,14\Rightarrow n=7,14