Solveeit Logo

Question

Mathematics Question on permutations and combinations

If nC1+2nC2+....+nnCn=2n2^nC_1 + 2\, ^nC_2 + .... + n\, ^nC_n = 2n^2, then n=n =

A

4

B

2

C

1

D

8

Answer

4

Explanation

Solution

nC1+2nC2+....+nnCn=2n2^{n}C_{1}+2 ^{n}C_{2}+....+n ^{n}C_{n}=2n^{2}
k=1nknCk=2n2\Rightarrow \:\:\: \displaystyle\sum_{k=1}^{n} k \, ^nC_k = 2n^2
k=1nk(n!)k!(nk)!=2n2\Rightarrow \:\:\: \displaystyle\sum_{k=1}^{n} \frac{k(n!)}{k!(n-k)!} = 2n^2
k=1nkn(n1)!k(k1)!(nk)!=2n2\Rightarrow \:\:\: \displaystyle\sum_{k=1}^{n} \frac{k \, n(n-1)!}{k(k -1)!(n-k)!} = 2n^2
nk=1n(n1)!(k1)!(nk)!=2n2\Rightarrow \:\:\: n\displaystyle\sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} = 2n^2
k=1nn1Ck1=2n\Rightarrow \:\:\: \displaystyle\sum_{k=1}^{n} \,^{n -1}C_{k - 1}= 2n
2n1=2n\Rightarrow \:\:\: 2^{n -1} = 2n
n=4n = 4 satisfy the above equality
Hence, n=4n = 4.