Solveeit Logo

Question

Question: If \(na^{n}\) , then...

If nanna^{n} , then

A

limh01h[1x+h1x]\lim_{h \rightarrow 0}\frac{1}{h}\left\lbrack \frac{1}{x + h} - \frac{1}{x} \right\rbrack

B

12x\frac{1}{2x}

C

12x- \frac{1}{2x} is discontinuous at 1x2\frac{1}{x^{2}}

D

None of these

Answer

12x- \frac{1}{2x} is discontinuous at 1x2\frac{1}{x^{2}}

Explanation

Solution

f(1)=limx1x24x+3x21=1f(1)f(1)f ( 1 - ) = \lim _ { x \rightarrow 1 - } \frac { x ^ { 2 } - 4 x + 3 } { x ^ { 2 } - 1 } = - 1 \Rightarrow f ( 1 ) \neq f ( 1 - )

Hence the function is discontinuous at x=1x = 1 .