Solveeit Logo

Question

Question: If na is the greatest term in the sequence 3 n 4 n a ,n 1, 2,3....... n 147 , then is equal to ? So...

If na is the greatest term in the sequence 3 n 4 n a ,n 1, 2,3....... n 147 , then is equal to ? Solve this q using AM-GM inequality

Answer

5

Explanation

Solution

To find the greatest term in the sequence an=n3n4+147a_n = \frac{n^3}{n^4 + 147}, we can minimize its reciprocal, 1an\frac{1}{a_n}.

Let f(n)=1an=n4+147n3=n+147n3f(n) = \frac{1}{a_n} = \frac{n^4 + 147}{n^3} = n + \frac{147}{n^3}. We want to minimize f(n)f(n). To apply the AM-GM inequality, we need the product of the terms to be constant.

Consider the terms n3\frac{n}{3}, n3\frac{n}{3}, n3\frac{n}{3}, and 147n3\frac{147}{n^3}. The sum of these four terms is n3+n3+n3+147n3=n+147n3\frac{n}{3} + \frac{n}{3} + \frac{n}{3} + \frac{147}{n^3} = n + \frac{147}{n^3}. The product of these four terms is n3n3n3147n3=n327147n3=14727\frac{n}{3} \cdot \frac{n}{3} \cdot \frac{n}{3} \cdot \frac{147}{n^3} = \frac{n^3}{27} \cdot \frac{147}{n^3} = \frac{147}{27}. This product is a constant.

According to the AM-GM inequality, for non-negative numbers x1,x2,...,xkx_1, x_2, ..., x_k:

x1+x2+...+xkk(x1x2...xk)1k\frac{x_1 + x_2 + ... + x_k}{k} \ge (x_1 \cdot x_2 \cdot ... \cdot x_k)^{\frac{1}{k}}

Applying this to our four terms:

n3+n3+n3+147n34((n3)3147n3)14\frac{\frac{n}{3} + \frac{n}{3} + \frac{n}{3} + \frac{147}{n^3}}{4} \ge \left( \left(\frac{n}{3}\right)^3 \cdot \frac{147}{n^3} \right)^{\frac{1}{4}} n+147n34(14727)14\frac{n + \frac{147}{n^3}}{4} \ge \left( \frac{147}{27} \right)^{\frac{1}{4}} n+147n34(14727)14n + \frac{147}{n^3} \ge 4 \cdot \left( \frac{147}{27} \right)^{\frac{1}{4}}

The minimum value of n+147n3n + \frac{147}{n^3} occurs when all the terms are equal:

n3=147n3\frac{n}{3} = \frac{147}{n^3} n4=3147n^4 = 3 \cdot 147 n4=441n^4 = 441 n=(441)14n = (441)^{\frac{1}{4}} n=(212)14n = (21^2)^{\frac{1}{4}} n=2112=21n = 21^{\frac{1}{2}} = \sqrt{21}

Since nn must be an integer (n=1,2,3,...n = 1, 2, 3, ...), and 21\sqrt{21} is approximately 4.584.58, the minimum value of f(n)f(n) (and thus the maximum value of ana_n) will occur at an integer nn close to 4.584.58. We need to check n=4n=4 and n=5n=5.

Let's evaluate f(n)=n+147n3f(n) = n + \frac{147}{n^3} for n=4n=4 and n=5n=5:

For n=4n=4:

f(4)=4+14743=4+14764=4+2.296875=6.296875f(4) = 4 + \frac{147}{4^3} = 4 + \frac{147}{64} = 4 + 2.296875 = 6.296875

For n=5n=5:

f(5)=5+14753=5+147125=5+1.176=6.176f(5) = 5 + \frac{147}{5^3} = 5 + \frac{147}{125} = 5 + 1.176 = 6.176

Comparing the values, f(5)f(5) is smaller than f(4)f(4). Since an=1f(n)a_n = \frac{1}{f(n)}, a smaller f(n)f(n) means a larger ana_n. Therefore, a5a_5 is greater than a4a_4.

To confirm that n=5n=5 is indeed the maximum, we can also check f(3)f(3) and f(6)f(6):

f(3)=3+14733=3+14727=3+499=3+5.444...=8.444...f(3) = 3 + \frac{147}{3^3} = 3 + \frac{147}{27} = 3 + \frac{49}{9} = 3 + 5.444... = 8.444... f(6)=6+14763=6+147216=6+0.6805...=6.6805...f(6) = 6 + \frac{147}{6^3} = 6 + \frac{147}{216} = 6 + 0.6805... = 6.6805...

The values of f(n)f(n) are f(3)=8.444...f(3) = 8.444..., f(4)=6.296875f(4) = 6.296875, f(5)=6.176f(5) = 6.176, f(6)=6.6805...f(6) = 6.6805.... This shows that f(n)f(n) decreases until n=5n=5 and then starts increasing. Thus, f(5)f(5) is the minimum value of f(n)f(n) for integer nn.

Therefore, a5a_5 is the greatest term in the sequence. The value of nn for which ana_n is the greatest is 55.

The final answer is 5\boxed{5}

Explanation of the solution:

  1. The sequence is an=n3n4+147a_n = \frac{n^3}{n^4 + 147}. To find the maximum ana_n, we minimize its reciprocal f(n)=1an=n+147n3f(n) = \frac{1}{a_n} = n + \frac{147}{n^3}.
  2. Apply AM-GM inequality to terms n3,n3,n3,147n3\frac{n}{3}, \frac{n}{3}, \frac{n}{3}, \frac{147}{n^3}. Their sum is n+147n3n + \frac{147}{n^3}, and their product is (n3)3147n3=14727\left(\frac{n}{3}\right)^3 \cdot \frac{147}{n^3} = \frac{147}{27} (a constant).
  3. The equality condition for AM-GM gives the minimum value: n3=147n3\frac{n}{3} = \frac{147}{n^3}, which leads to n4=441n^4 = 441, so n=4414n = \sqrt[4]{441}.
  4. Since nn must be an integer, and 44144.58\sqrt[4]{441} \approx 4.58, we check the integer values n=4n=4 and n=5n=5.
  5. Calculate f(4)=4+14764=6.296875f(4) = 4 + \frac{147}{64} = 6.296875 and f(5)=5+147125=6.176f(5) = 5 + \frac{147}{125} = 6.176.
  6. Since f(5)<f(4)f(5) < f(4), a5a_5 is greater than a4a_4. Therefore, n=5n=5 corresponds to the greatest term.