Solveeit Logo

Question

Question: If n ∈ N and $(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then $\sum_{r=0}^{n} (-1)^r a_r {}^nC_r$ i...

If n ∈ N and (1+x+x2)n=r=02narxr(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r, then r=0n(1)rarnCr\sum_{r=0}^{n} (-1)^r a_r {}^nC_r is equal to

A

0 if n = 57

B

0 if n = 77

C

24C8{}^{24}C_8 if n = 24

D

39C13{}^{39}C_{13} if n = 39

Answer

(B), (C), (D)

Explanation

Solution

Let the given equation be (1+x+x2)n=r=02narxr(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r. We are asked to find the value of the sum S=r=0n(1)rarnCrS = \sum_{r=0}^{n} (-1)^r a_r {}^nC_r.

Consider the product of the series expansion of (1+x+x2)n(1+x+x^2)^n and the series expansion of (11/x)n(1-1/x)^n. (1+x+x2)n=r=02narxr(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r. (11/x)n=k=0nnCk(1/x)k=k=0n(1)knCkxk(1-1/x)^n = \sum_{k=0}^n {}^nC_k (-1/x)^k = \sum_{k=0}^n (-1)^k {}^nC_k x^{-k}.

The product is (1+x+x2)n(11/x)n=(r=02narxr)(k=0n(1)knCkxk)(1+x+x^2)^n (1-1/x)^n = \left(\sum_{r=0}^{2n} a_r x^r\right) \left(\sum_{k=0}^n (-1)^k {}^nC_k x^{-k}\right). The coefficient of x0x^0 (the constant term) in this product is obtained by summing the products of terms arxra_r x^r and (1)knCkxk(-1)^k {}^nC_k x^{-k} such that rk=0r-k=0, i.e., r=kr=k. The coefficient of x0x^0 is r=0min(2n,n)ar(1)rnCr\sum_{r=0}^{\min(2n, n)} a_r (-1)^r {}^nC_r. Since the upper limit of the sum we want to evaluate is nn, and nCr=0{}^nC_r=0 for r>nr>n, we can write the constant term as r=02nar(1)rnCr\sum_{r=0}^{2n} a_r (-1)^r {}^nC_r. As nCr=0{}^nC_r=0 for r>nr>n, this sum is equal to r=0nar(1)rnCr=r=0n(1)rarnCr=S\sum_{r=0}^{n} a_r (-1)^r {}^nC_r = \sum_{r=0}^{n} (-1)^r a_r {}^nC_r = S.

Now let's evaluate the product (1+x+x2)n(11/x)n(1+x+x^2)^n (1-1/x)^n in a different way. (1+x+x2)n(11/x)n=(1+x+x2)n(x1x)n=(1+x+x2)n(x1)nxn(1+x+x^2)^n (1-1/x)^n = (1+x+x^2)^n \left(\frac{x-1}{x}\right)^n = \frac{(1+x+x^2)^n (x-1)^n}{x^n}. Using the identity (x1)(x2+x+1)=x31(x-1)(x^2+x+1) = x^3-1, we have (x1)(1+x+x2)=x31(x-1)(1+x+x^2) = x^3-1. So, the expression becomes ((1+x+x2)(x1))nxn=(x31)nxn\frac{((1+x+x^2)(x-1))^n}{x^n} = \frac{(x^3-1)^n}{x^n}.

Now, expand (x31)n(x^3-1)^n using the binomial theorem: (x31)n=k=0nnCk(x3)k(1)nk=k=0n(1)nknCkx3k(x^3-1)^n = \sum_{k=0}^n {}^nC_k (x^3)^k (-1)^{n-k} = \sum_{k=0}^n (-1)^{n-k} {}^nC_k x^{3k}.

So, (x31)nxn=k=0n(1)nknCkx3kxn=k=0n(1)nknCkx3kn\frac{(x^3-1)^n}{x^n} = \frac{\sum_{k=0}^n (-1)^{n-k} {}^nC_k x^{3k}}{x^n} = \sum_{k=0}^n (-1)^{n-k} {}^nC_k x^{3k-n}.

The constant term in this expansion is obtained when the exponent of xx is 0, i.e., 3kn=03k-n=0, or 3k=n3k=n. For the constant term to exist, nn must be a multiple of 3. If nn is a multiple of 3, let n=3mn=3m for some integer mm. Then 3k=3m3k=3m, which gives k=mk=m. Since 0kn0 \le k \le n, we must have 0m3m0 \le m \le 3m, which is true for m0m \ge 0. The value of kk is n/3n/3. The constant term is (1)nn/3nCn/3(-1)^{n-n/3} {}^nC_{n/3}. If n=3mn=3m, the constant term is (1)3mmnCm=(1)2mnCm=((1)2)mnCm=1mnCm=nCm(-1)^{3m-m} {}^nC_m = (-1)^{2m} {}^nC_m = ((-1)^2)^m {}^nC_m = 1^m {}^nC_m = {}^nC_m. Since m=n/3m=n/3, the constant term is nCn/3{}^nC_{n/3}.

If nn is not a multiple of 3, there is no integer kk in the range 0kn0 \le k \le n such that 3k=n3k=n. In this case, the coefficient of x0x^0 is 0.

So, the sum S=r=0n(1)rarnCrS = \sum_{r=0}^{n} (-1)^r a_r {}^nC_r is equal to:

  • nCn/3{}^nC_{n/3} if n0(mod3)n \equiv 0 \pmod 3.

  • 0 if n≢0(mod3)n \not\equiv 0 \pmod 3.

Now let's check the given options:

(A) 0 if n=57n=57. 57=3×1957 = 3 \times 19. n0(mod3)n \equiv 0 \pmod 3. The sum is 57C19{}^{57}C_{19}. So this option is incorrect.

(B) 0 if n=77n=77. 77=3×25+277 = 3 \times 25 + 2. n≢0(mod3)n \not\equiv 0 \pmod 3. The sum is 0. So this option is correct.

(C) 24C8{}^{24}C_8 if n=24n=24. 24=3×824 = 3 \times 8. n0(mod3)n \equiv 0 \pmod 3. The sum is 24C24/3=24C8{}^{24}C_{24/3} = {}^{24}C_8. So this option is correct.

(D) 39C13{}^{39}C_{13} if n=39n=39. 39=3×1339 = 3 \times 13. n0(mod3)n \equiv 0 \pmod 3. The sum is 39C39/3=39C13{}^{39}C_{39/3} = {}^{39}C_{13}. So this option is correct.

Since the question asks which of the options is equal to the sum, and multiple options are correct, this is a multiple correct options question.