Solveeit Logo

Question

Mathematics Question on permutations and combinations

If n is the number of ways five different employees can sit into four indistinguishable offices where any office may have any number of persons including zero, then n is equal to:

A

47

B

53

C

51

D

43

Answer

51

Explanation

Solution

Total ways to partition 5 into 4 parts are:

  • 5, 0, 0, 0 → 1 way

  • 4, 1, 0, 0 → 5!4!=5 ways\frac{5!}{4!} = 5 \text{ ways}

  • 3, 2, 0, 0 →5!3!2!=10 ways\frac{5!}{3!2!} = 10 \text{ ways}

  • 2, 2, 1, 0 →5!2!2!1!=15 ways\frac{5!}{2!2!1!} = 15 \text{ ways}

  • 2, 1, 1, 1 →5!2!1!1!1!=10 ways\frac{5!}{2!1!1!1!} = 10 \text{ ways}

  • 3, 1, 1, 0 → 5!3!1!1!=10 ways\frac{5!}{3!1!1!} = 10 \text{ ways}

Total:

1+5+10+15+10+10=51 ways1 + 5 + 10 + 15 + 10 + 10 = 51 \text{ ways}