Solveeit Logo

Question

Question: If n is odd, then C<sub>0</sub><sup>2</sup> – C<sub>1</sub><sup>2</sup> + C<sub>2</sub><sup>2</sup> ...

If n is odd, then C02 – C12 + C22 – C32 +……….(–1)n Cn2 equals–

A

0

B

1

C

D

n!(n2)2!\frac{n!}{\left( \frac{n}{2} \right)^{2}!}

Answer

0

Explanation

Solution

(1 + x)n = C0 + C1x + C2x2+…….Cnxn ––––(i)

(x–1)n = C0xn – C1xn–1 + C2xn–2 ……..(–1)n nCn–(ii)

Multiplying (i) & (ii) and equating the coeff of xn, we get,

C02 – C12 + C22 …………(–1)n Cn2 = nCn/2 (–1)n/2 (x2)n/2

Above is possible only when n2\frac{n}{2} is an integer i.e. n is even and in case n is odd, then term xn will not occur