Solveeit Logo

Question

Question: If n is even, then in the expansion of \({{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... ...

If n is even, then in the expansion of (1+x22!+x44!+...)2{{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... \right)}^{2}} , the coefficient of xn{{x}^{n}} is
A. 2nn!\dfrac{{{2}^{n}}}{n!}
B. 2n2n!\dfrac{{{2}^{n}}-2}{n!}
C. 2n11n!\dfrac{{{2}^{n-1}}-1}{n!}
D. 2n1n!\dfrac{{{2}^{n-1}}}{n!} .

Explanation

Solution

Hint:Use Taylor series for expansion of ex{{e}^{x}} and ex{{e}^{-x}} .Add the series and square then to get the series given. Now fix e2x{{e}^{2x}} and e2x{{e}^{-2x}} and add them. Substitute their values back to the squared series and simplify it to get a coefficient of xn{{x}^{n}} .

Complete step-by-step answer:
We have been given the expansion of an expression. We need to find the coefficient of xn{{x}^{n}} from the given expression.
We have been given, (1+x22!+x44!+...)2{{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... \right)}^{2}} .
According to Taylor series which is an expansion of some function into an infinite sum of terms, where each term has a larger exponent like x,x2,x3.....etcx,{{x}^{2}},{{x}^{3}}.....etc .
By using Taylor series, we can say that,
ex=1+x1!+x22!+x33!+x44!+......(1){{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1) .
Similarly, ex=1x1!+x22!+x33!+x44!.....(2){{e}^{-x}}=1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}.....\to (2) .
Now let us add (1) and (2).
ex+ex=(1+x1!+x22!+x33!+.....)+(1x1!+x22!+x33!+....){{e}^{x}}+{{e}^{-x}}=\left( 1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+..... \right)+\left( 1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+.... \right) .
ex+ex=2(1+x22!+x44!+x66!+.....){{e}^{x}}+{{e}^{-x}}=2\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+\dfrac{{{x}^{6}}}{6!}+..... \right) .
Now let us find the square of (ex+ex2)\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right) .
(ex+ex2)2=14(e2x+2ex.ex+e2x){{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left( {{e}^{2x}}+2{{e}^{x}}.{{e}^{-x}}+{{e}^{-2x}} \right) .
(a+b)2=a2+2ab+b\because {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+b .
(ex+ex2)2=14[e2x+e2x+2](4){{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left[ {{e}^{2x}}+{{e}^{-2x}}+2 \right]\to (4) .
We know ex{{e}^{x}} and ex{{e}^{-x}} from Taylor’s sense. Thus let us find the expansion of e2x{{e}^{2x}} and e2x{{e}^{-2x}} . Thus substitute (2x)(2x) in place of xx .
e2x=1+2x1!+(2x)22!+(2x)33!+.....(5) e2x=12x1!+(2x)22!(2x)33!+.....(6) \begin{aligned} & {{e}^{2x}}=1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (5) \\\ & {{e}^{-2x}}=1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (6) \\\ \end{aligned}
Bow let us add (5) and (6). We get,

& {{e}^{2x}}+{{e}^{-2x}}=\left( 1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.... \right)+\left( 1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!} \right) \\\ & {{e}^{2x}}+{{e}^{-2x}}=2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)\to (7) \\\ \end{aligned}$$ Now let us substitute the value of (7) in (4) $\begin{aligned} & =\dfrac{1}{4}\left( {{e}^{2x}}+{{e}^{-2x}}+2 \right)=\dfrac{1}{4}\left[ 2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)+2 \right] \\\ & =\dfrac{2}{4}\left[ 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....+1 \right] \\\ & =\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]. \\\ \end{aligned}$ Now, $2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....$ is of the form $\left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right).$ Thus we can find, $\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+..... \right]=\dfrac{1}{2}\times \left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right)$ . $\dfrac{1}{2}.\dfrac{{{2}^{n}}}{n!}{{x}^{n}}=\dfrac{{{2}^{n}}\times {{2}^{-1}}}{n!}{{x}^{n}}$ . $=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ . We were asked to find the coefficient of ${{x}^{n}}$ . We get, $\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ . Hence the coefficient of ${{x}^{2}}=\dfrac{{{2}^{n-1}}}{n!}$ . Thus we got the required value. Hence option (D) is the correct answer. Note: We have series for the given expansion. You should be able to identify the given expansion. So it is important that you learn basic expansions of ${{e}^{x}},{{e}^{-x}},\cos x,{{\left( 1-x \right)}^{n}},{{\left( 1+x \right)}^{n}}etc$.Students should remember the expansion of ${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1)$ and replacing x by -x we get expansion of ${{e}^{-x}}$.