Solveeit Logo

Question

Question: If n is any positive integer, find the value of \(\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}\)....

If n is any positive integer, find the value of i4n+1i4n12\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}.

Explanation

Solution

Hint: Use the fact that i=1i=\sqrt{-1} is a square root of unity. Calculate higher powers of ii and simplify the given expression using the law of exponents. Then substitute the values of higher powers of ii to calculate the value of the given expression.

Complete step-by-step solution -
We have to calculate the value of i4n+1i4n12\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}. We observe that an expression is a complex number.
We know that i=1i=\sqrt{-1}. We will now calculate higher powers of ii.
Thus, we have i2=(1)2=1,i3=i2×i=i,i4=(i2)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1,{{i}^{3}}={{i}^{2}}\times i=-i,{{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}=1.
We know the laws of exponents state that ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}} and (ab)c=abc{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}.
So, we can simplify the expression i4n+1{{i}^{4n+1}} as i4n+1=i4n×i=(i4)n×i{{i}^{4n+1}}={{i}^{4n}}\times i={{\left( {{i}^{4}} \right)}^{n}}\times i.
We know that i4=1{{i}^{4}}=1.
Thus, we have i4n+1=i4n×i=(i4)n×i=1n×i=1×i=i.....(1){{i}^{4n+1}}={{i}^{4n}}\times i={{\left( {{i}^{4}} \right)}^{n}}\times i={{1}^{n}}\times i=1\times i=i.....\left( 1 \right).
We will now simplify the expression i4n1{{i}^{4n-1}}.
Using the laws of exponents, we can rewrite the expression i4n1{{i}^{4n-1}} as i4n1=i4n×i1=(i4)n×i1{{i}^{4n-1}}={{i}^{4n}}\times {{i}^{-1}}={{\left( {{i}^{4}} \right)}^{n}}\times {{i}^{-1}}.
We know that i4=1{{i}^{4}}=1.
Thus, we have i4n1=i4n×i1=(i4)n×i1=1n×i1=1×1i=1i{{i}^{4n-1}}={{i}^{4n}}\times {{i}^{-1}}={{\left( {{i}^{4}} \right)}^{n}}\times {{i}^{-1}}={{1}^{n}}\times {{i}^{-1}}=1\times \dfrac{1}{i}=\dfrac{1}{i}.
We will further simplify this expression by multiplying and dividing it by ii.
Thus, we have i4n1=1i=1i×ii{{i}^{4n-1}}=\dfrac{1}{i}=\dfrac{1}{i}\times \dfrac{i}{i}.
Simplifying the above expression, we have i4n1=1i=1i×ii=ii2{{i}^{4n-1}}=\dfrac{1}{i}=\dfrac{1}{i}\times \dfrac{i}{i}=\dfrac{i}{{{i}^{2}}}.
We know that i2=1{{i}^{2}}=-1.
Thus, we have i4n1=1i=1i×ii=ii2=i1=i.....(2){{i}^{4n-1}}=\dfrac{1}{i}=\dfrac{1}{i}\times \dfrac{i}{i}=\dfrac{i}{{{i}^{2}}}=\dfrac{i}{-1}=-i.....\left( 2 \right).
Substituting equation (1) and (2) in the expression i4n+1i4n12\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}, we have i4n+1i4n12=i(i)2\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}=\dfrac{i-\left( -i \right)}{2}.
Thus, we have i4n+1i4n12=i(i)2=i+i2=2i2=i\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2}=\dfrac{i-\left( -i \right)}{2}=\dfrac{i+i}{2}=\dfrac{2i}{2}=i.
Hence, the value of the expression i4n+1i4n12\dfrac{{{i}^{4n+1}}-{{i}^{4n-1}}}{2} is ii for all positive integer values of n.

Note: We can also solve this question by applying induction on ‘n’. We can substitute any positive integer value of n; the value of the expression won’t change. We can write any complex number in the form a+iba+ib, where ibib is the imaginary part and aa is the real part.