Solveeit Logo

Question

Question: If 'n' is an integer, the domain of the function $\sqrt{\sin 2x}$ is...

If 'n' is an integer, the domain of the function sin2x\sqrt{\sin 2x} is

A

[nππ2,nπ]\left[n\pi-\frac{\pi}{2}, n\pi\right]

B

[nπ,nπ+π2]\left[n\pi, n\pi+\frac{\pi}{2}\right]

C

[(2n1)π,2nπ]\left[(2n-1)\pi, 2n\pi\right]

D

[2nπ,(2n+1)π]\left[2n\pi, (2n+1)\pi\right]

Answer

[nπ,nπ+π2]\left[n\pi, n\pi+\frac{\pi}{2}\right]

Explanation

Solution

The function is defined when sin2x0\sin 2x \ge 0. This occurs when 2kπ2x(2k+1)π2k\pi \le 2x \le (2k+1)\pi, where kk is an integer. Dividing by 2, we get kπxkπ+π2k\pi \le x \le k\pi + \frac{\pi}{2}. Replacing kk with nn, the domain is [nπ,nπ+π2]\left[n\pi, n\pi + \frac{\pi}{2}\right].