Solveeit Logo

Question

Question: If n is an integer greater than 1, then \(a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a -...

If n is an integer greater than 1, then anc1(a1)+nc2(a2).......+(1)n(an)=a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) =
A) a
B) 0
C) a2{a^2}
D) 2n{2^n}

Explanation

Solution

It is given in the question that n is an integer greater than 1, then anc1(a1)+nc2(a2).......+(1)n(an)a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)
Firstly, expand the given series using the formula r=0n(1)rnCr(ar)\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right) .
Then, solve the series further to get the required answer.

Complete step by step solution:
It is given in the question that n is an integer greater than 1, then anc1(a1)+nc2(a2).......+(1)n(an)a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)
First, take the given equation:
anc1(a1)+nc2(a2).......+(1)n(an)a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)
Now, we can write above sequence as
=r=0n(1)rnCr(ar)= \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)
=r=0n(1)rnCr.ar=0n(1)rnCr.r= \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .a - \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r
=ar=0n(1)rnCrr=1n(1)rnCr.r= a\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r (where r=0r = 0 , we get 0)
Now, using formula (nCr=nrn1Cr1)(1+x)n=r=0nnCrxr\left( {{}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right){\left( {1 + x} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r} when x=1x = - 1 (11)n=r=0nnCr(1)r \Rightarrow {\left( {1 - 1} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( { - 1} \right)^r}
=a(11)nr=1n(1)r.nrn1Cr1.r= a{\left( {1 - 1} \right)^n} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} .r
=a(0)r=1n(1)rn.n1Cr1= a\left( 0 \right) - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}n.{}^{n - 1}{C_{r - 1}}}
=0nr=1n(1)rn1Cr1= 0 - n\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^{n - 1}{C_{r - 1}}}
=n[n1Co+n1C1n1C2.............(1)n1n1Cn1]= - n\left[ { - {}^{n - 1}{C_o} + {}^{n - 1}{C_1} - {}^{n - 1}{C_2}.............{{\left( 1 \right)}^{n - 1}}{}^{n - 1}{C_{n - 1}}} \right]
=n(0) =0= - n\left( 0 \right) \\\ =0

Therefore, if n is an integer greater than 1, then anc1(a1)+nc2(a2).......+(1)n(an)=0a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = 0.

Note:
Combination: A combination is a selection of items from a collection, such that the order of selection does not matter.
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} .
Permutation: permutation means arranging all the members of a set into some sequence or order.
nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}