Solveeit Logo

Question

Question: If *n* is an integer greater than 1, then \[a -^{n} ⥂ C_{1}(a - 1) +^{n} ⥂ C_{2}(a - 2) - ........ ...

If n is an integer greater than 1, then

anC1(a1)+nC2(a2)........+(1)n(an)=a -^{n} ⥂ C_{1}(a - 1) +^{n} ⥂ C_{2}(a - 2) - ........ + ( - 1)^{n}(a - n) =

A

a

B

0

C

a2a^{2}

D

2n2^{n}

Answer

0

Explanation

Solution

We have a[C0C1+C2......]+[C12C2+3C3.....]a\lbrack C_{0} - C_{1} + C_{2}......\rbrack + \lbrack C_{1} - 2C_{2} + 3C_{3}.....\rbrack

= a[C0C1+C2......][C1+2C23C3+......]a\lbrack C_{0} - C_{1} + C_{2}......\rbrack - \lbrack - C_{1} + 2C_{2} - 3C_{3} + ......\rbrack

We know that (1x)n=C0C1x+C2x2......(1)nCnxn(1 - x)^{n} = C_{0} - C_{1}x + C_{2}x^{2}......( - 1)^{n}C_{n}x^{n};

Put x=1x = 1, 0=C0C1+C2.......0 = C_{0} - C_{1} + C_{2}.......

Then differentiating both sides w.r.t. to x ,

we get n(1x)n1=0C1+2C2x3C3x2+.....n(1 - x)^{n - 1} = 0 - C_{1} + 2C_{2}x - 3C_{3}x^{2} + .....

Put x=1x = 1, 0=C1+2C23C3+....0 = - C_{1} + 2C_{2} - 3C_{3} + .... = a[0][0]=0a\lbrack 0\rbrack - \lbrack 0\rbrack = 0.