Solveeit Logo

Question

Mathematics Question on Determinants

If n is an integer and if xnxn+2xn+3\[0.3em]ynyn+2yn+3\[0.3em]znzn+2zn+3=(xy(yz)(zx)(1x+1y+1z) \begin{vmatrix} x^n& x^{n+2}& x^{n+3} \\\[0.3em] y^n &y^{n+2} & y^{n+3} \\\[0.3em] z^n & z^{n+2}&z^{n+3} \end{vmatrix}=(x-y\,(y-z)\,(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) then n equals

A

1

B

-1

C

2

D

None of these.

Answer

-1

Explanation

Solution

xnxn+2xn+3\[0.3em]ynyn+2yn+3\[0.3em]znzn+2zn+3=xnynzn1x2x3\[0.3em]1y2y3\[0.3em]1z2z3\begin{vmatrix} x^n& x^{n+2}& x^{n+3} \\\[0.3em] y^n &y^{n+2} & y^{n+3} \\\[0.3em] z^n & z^{n+2}&z^{n+3} \end{vmatrix} = x^ny^nz^n \begin{vmatrix} 1& x^2& x^3 \\\[0.3em] 1 &y^2 & y^3 \\\[0.3em] 1 & z^{2}&z^{3} \end{vmatrix} xnynzn1x2x3\[0.3em]1y2x3y3x3\[0.3em]0z2x2z3x3x^ny^nz^n \begin{vmatrix} 1& x^2& x^3 \\\[0.3em] 1 &y^2-x^3 & y^3-x^3 \\\[0.3em] 0 & z^{2} - x^2&z^{3} - x^3 \end{vmatrix} (By operating R3R1R2R1R_3 - R_1 \, R_2 - R_1) = xnynzn(yx)(zx)1x2x3\[0.3em]0x+yx2+y2+xy\[0.3em]0x+zx2+z2+xzx^ny^nz^n (y -x)(z-x)\begin{vmatrix} 1& x^2& x^3 \\\[0.3em] 0 &x+y & x^2 +y^2+xy \\\[0.3em] 0 & x+z &x^2 +z^2 +xz \end{vmatrix} = xnynzn(xy)(xz)(x3+xz2+x2z+yz2+yz2+xyzx3xy2x2yzx2zy2xyz)x^n \, y^n \, z^n \, (x - y) (x - z) (x^3 + xz^2 + x^2z + yz^2 + yz^2 +xyz- x^3 - xy^2 - x^2y - zx^2 - zy^2 - xyz) = xnynzn(xy)(xz)[xz2+yz2xy22y2]x^n \, y^n \, z^n \, (x - y) (x - z) [xz^2 + yz^2 - xy^2 -2y^2] = xnynzn(xy)(xz)[x(z2y2)+yz(zy)]x^ny^nz^n(x- y) (x - z) [x(z^2 -y^2) + yz(z-y)] = xnynzn(xy)(xz)(zy)(xy+yz+zx)x^ny^nz^n (x- y) (x- z)(z - y) (xy + yz + zx) = (xnynzn)(xy)(xz)(zy)(xy+yz+zx)(x^ny^nz^n)(x -y)(x- z) (z - y) (xy + yz + zx) = xn+1yn+1zn+1(xy)(yZ)(zX)x^{n + 1} \, y^{n +1} \, z^{n+1} \, (x - y) (y - Z) (z - X) (1x+1y+1z)\left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) Comparing with given value of determinant nn + 1 = 0 \Rightarrow n = - 1.