Question
Mathematics Question on Determinants
If n is an integer and if xn\[0.3em]yn\[0.3em]znxn+2yn+2zn+2xn+3yn+3zn+3=(x−y(y−z)(z−x)(x1+y1+z1) then n equals
A
1
B
-1
C
2
D
None of these.
Answer
-1
Explanation
Solution
xn\[0.3em]yn\[0.3em]znxn+2yn+2zn+2xn+3yn+3zn+3=xnynzn1\[0.3em]1\[0.3em]1x2y2z2x3y3z3 xnynzn1\[0.3em]1\[0.3em]0x2y2−x3z2−x2x3y3−x3z3−x3 (By operating R3−R1R2−R1) = xnynzn(y−x)(z−x)1\[0.3em]0\[0.3em]0x2x+yx+zx3x2+y2+xyx2+z2+xz = xnynzn(x−y)(x−z)(x3+xz2+x2z+yz2+yz2+xyz−x3−xy2−x2y−zx2−zy2−xyz) = xnynzn(x−y)(x−z)[xz2+yz2−xy2−2y2] = xnynzn(x−y)(x−z)[x(z2−y2)+yz(z−y)] = xnynzn(x−y)(x−z)(z−y)(xy+yz+zx) = (xnynzn)(x−y)(x−z)(z−y)(xy+yz+zx) = xn+1yn+1zn+1(x−y)(y−Z)(z−X) (x1+y1+z1) Comparing with given value of determinant n + 1 = 0 ⇒ n = - 1.