Solveeit Logo

Question

Quantitative Aptitude Question on Linear & Quadratic Equations

If n is a positive integer such that (710)(710)2).....(710)n)>999(^7\sqrt{10})(^7\sqrt{10})^2).....(^7\sqrt{10})^n) > 999, then the smallest value of n is

Answer

Given that:
(710)(710)2).....(710)n)>999(^7\sqrt{10})(^7\sqrt{10})^2).....(^7\sqrt{10})^n) > 999

This implies:
1017×1027×....×10n7>99910^{\frac{1}{7}} \times 10^{\frac{2}{7}} \times .... \times 10^{\frac{n}{7}} > 999

By multiplying powers with the same base, you add the exponents:
10(17+27+...+n7)>99910^{{(\frac{1}{7} +\frac{ 2}{7} + ... + \frac{n}{7})}} > 999
10(1+2+...+n)7)>99910^{(\frac{1+2+...+n)}{7})} > 999

Now, we know 103=100010^3 = 1000 and that's the closest power of 10 to 999.
So,
10(1+2+...+n)7)>10310^{(\frac{1+2+...+n)}{7})} > 10^3

For minimum value of n,

1+2+....+n7=3\frac{1+2+....+n}{7}=3

1+2+...+n=211+2+...+n=21
Now if n=6
1+2+3+4+5+6=211+2+3+4+5+6=21
That means, the smallest value for n is 6

So, the answer is 6.