Solveeit Logo

Question

Question: If n is a positive integer and [x] is the greatest integer not exceeding x, then \(\int _ { 0 } ^ { ...

If n is a positive integer and [x] is the greatest integer not exceeding x, then 0n{x[x]}dx\int _ { 0 } ^ { n } \{ x - [ x ] \} d x equals

A

n2/2n ^ { 2 } / 2

B

n(n1)/2n ( n - 1 ) / 2

C

n/2n / 2

D

n22n\frac { n ^ { 2 } } { 2 } - n

Answer

n/2n / 2

Explanation

Solution

x[x]x - [ x ] is a periodic function with period 1.

0n{x[x]}dx=n01(x[x])dx\therefore \int _ { 0 } ^ { n } \{ x - [ x ] \} d x = n \int _ { 0 } ^ { 1 } ( x - [ x ] ) d x

=n[01xdx01[x]dx]= n \left[ \int _ { 0 } ^ { 1 } x d x - \int _ { 0 } ^ { 1 } [ x ] d x \right] .