Solveeit Logo

Question

Question: If \( n \geqslant 2\) then \(3{C_1} - 4{C_2} + 5{C_3} - .......1{\left( { - 1} \right)^{n - 1}}\left...

If n2 n \geqslant 2 then 3C14C2+5C3.......1(1)n1(n+2)Cn3{C_1} - 4{C_2} + 5{C_3} - .......1{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n} is equal to
A.1 - 1
B. 2
C.2 - 2
D.1

Explanation

Solution

We got the nth{n^{th}} term as (1)n1(n+2)Cn{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n} and the given series is
i=ni=2(1)n1(i+2)nCi\dfrac{{i = n}}{{\dfrac{\sum }{{i = 2}}}}{\left( { - 1} \right)^{n - 1}}{\left( {i + 2} \right)^n}Ci
Divide the express into 2 and relate it with binomial expansion’s coefficient where x=1x = - 1 for (1+x)n{\left( {1 + x} \right)^n}

Complete step-by-step answer:
Let’s begin with given expansion. It is
3nC14nC2+5nC3........+(1)n1(n+2)nCn\Rightarrow {3^n}{C_1} - {4^ n }{C_2} + {5^n}{C_3} - ........ + {\left( { - 1} \right)^{n - 1}}{\left( {n + 2} \right)^n}{C_ n}
So we can take nth{n^{th}} term as
(1)r1(r+2)  nCr\Rightarrow {\left( { - 1} \right)^{r - 1}}\left( {r + 2} \right){\;^n}{C_r}
Hence, series can also be written as
nr=1(1)n1(r+2)  nCr\dfrac{n}{{\dfrac{\sum }{{r = 1}}}}{\left( { - 1} \right)^{n - 1}}\left( {r + 2} \right){\;^n}{C_r} nr=1[(1)r1r  nCr+(1)r12.  2  nCr]\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}\left[ {{{\left( { - 1} \right)}^{r - 1}}r{\;^n}{C_r} + {{\left( { - 1} \right)}^{r - 1}}2.\;2{\;^n}{C_r}} \right]
So we can divide the expression into Z. where nr=1(1)r1r.  nCr      &2.nr=1  nCr\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}r.{\;^n}{C_r}\;\;\;\& \,2.\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\;^n}{C_r}
First, I would like to solve ni=1(1)r  r  ncr\dfrac{{\dfrac{n}{\sum }}}{{i = 1}}{\left( { - 1} \right)^r}\;r{\;^n}{c_r}. By observing the equation formation. Each of the values having term r as a multiple is quite different from a regular expression. It can be obtained on a regular basis , if the variable is differentiator.
As we know that binomial expansion of
(1+x)n=nC0+nC1x+nC2x2+nC3x3+......+nCnxn{\left( {1 + x} \right)^ n }{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ......{ + ^n}{C_n}{x^n}
If we differentiate both the side, we get w.r.t  xw.r.t\;x
n(1+x)n1=0+nC1+nC2.2x+nC3.3x2+.....nCnn.xn1\Rightarrow n{\left( {1 + x} \right)^{n - 1}} = 0{ + ^n}{C_1}{ + ^n}{C_2}.2x{ + ^n}{C_3}.3{x^{^2}} + {.....^n}{C_n} * n.{x^{n - 1}}
n(1+x)n1=nC1+2n.C2x+3.nC3.x2+......1n.nCn.xn1\Rightarrow n{\left( {1 + x} \right)^{n - 1}}{ = ^n}{C_1} + {2^n}.{C_2}x + {3.^n}{C_3}.{x^2} + ...... - 1n{.^n}{C_n}.{x^{n - 1}}
To obtain the relation with (1)\left( { - 1} \right) in each term we can use x=1.x = - 1. so we get.
n(11)n1=0+nC1+2.nC2(1)+3.nC3(1)2+......+n.nCn(1)\Rightarrow n{\left( {1 - 1} \right)^{n - 1}} = 0{ + ^n}{C_1} + {2.^n}{C_2}\left( { - 1} \right) + {3.^n}{C_3}{\left( { - 1} \right)^2} + ...... + n{.^n}{C_n}\left( { - 1} \right)
0=0+nC12.Cn2+3.nC34.nC4......\Rightarrow 0 = 0{ + ^n}{C_1} - {2.^C}{n_2} + {3.^n}{C_3} - {4.^n}{C_4}......
Hence. We got
nr=1(1)r=1r.nCr=0\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r = 1}}r{.^n}{C_r} = 0
Now, let’s compute
nr=1(1)xCr,\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^x}{C_r},
Which can be computed from Coefficient of (1+x)n{\left( {1 + x} \right)^ n } Binomial expansion will be
(1+x)n=nC0+nC1x+nC2x2+......+nCnxn{\left( {1 + x} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_n}{x^n}
If if need the expression in the form
[nC1nC2+nC3nC4+.........]\left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + .........} \right]
We need to put a Value of x=1x = - 1 . Therefore the equation will give
(11)n=nC0+nC1(1)+nC2(1)2+........+nCn(1)n\Rightarrow {\left( {1 - 1} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}\left( { - 1} \right){ + ^n}{C_2}{\left( { - 1} \right)^2} + ........{ + ^n}{C_n}{\left( { - 1} \right)^n}
0=nC0nC1+nC2nC3+.........+nCn(1)n\Rightarrow 0{ = ^n}{C_0}{ - ^n}{C_1}{ + ^n}{C_2}{ - ^n}{C_3} + .........{ + ^n}{C_n}{\left( { - 1} \right)^n}
If we compare, the equation resulted in
0=nC0[nC1nC2+nC3nC4+......+(1)n1nCn]\Rightarrow 0{ = ^n}{C_0} - \left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + ...... + {{\left( { - 1} \right)}^{n - 1}}^n{C_n}} \right]
=nC0nr=1(1)r1nCr{ = ^n}{C_0} - \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}
Therefore, nr=1(1)n1nCr=nC0=1\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r}{ = ^n}{C_0} = 1
We required 2×nr=1(1)n1nCr=2×(1)=22 \times \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r} = 2 \times \left( 1 \right) = 2 (2)
Hence we got both the value. So the equation given
nr=1(1)r1(r+1)nCr+2nr=1(1)r1nCr\Rightarrow \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}{\left( {r + 1} \right)^n}{C_r} + 2\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}
Using (1) and (2) we got
0+2(1)\Rightarrow 0 + 2\left( 1 \right)
=2= 2

Hence, option B is the correct answer.

Note: If we get into any binomial form of expression. It will be anyhow, the form of Binomial Expression for any short Expression. Binomial Properties are used to shorten the calculation like.
nCr+nCr1=n+1Cr{ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}