Question
Mathematics Question on Binomial theorem
If n≥2 is a positive integer, then the sum of the series n+1C2+2(2C2+3C2+4C2+….+nC2) is:
A
6n(n−1)(2n+1)
B
6n(n+1)(2n+1)
C
6n(2n+1)(3n+1)
D
12n(n+1)2(n+2)
Answer
6n(n+1)(2n+1)
Explanation
Solution
n+1C2+2(2C2+3C2+4C2+…….+nC2) n+1C2+2(3C3+3C2+4C2+…….+nC2) \left\\{\right. use \left.{ }^{n} C_{r+1}+{ }^{n} C_{r}={ }^{n+1} C_{r}\right\\} =n+1C2+2(4C3+4C2+5C3+……+nC2) n+1C2+2(5C3+5C2+…….+nC2)⋮ =n+1C2+2(nC3+nC2) =n+1C2+2⋅n+1C3 =2(n+1)n+2⋅2.3(n+1)(n)(n−1) =6n(n+1)(2n+1)