Solveeit Logo

Question

Question: If n cells each of emp \(r_{1}\) and internal resistance r are connected in parallel, then the total...

If n cells each of emp r1r_{1} and internal resistance r are connected in parallel, then the total emf and internal resistance will be

A

r2r_{2},r1r_{1}

B

r2r_{2},nr

C

n ρ\rho,r1r2ρ2\frac{r_{1}}{r_{2}}\frac{\rho}{2}

D

nr2r1r1r2ρ4π\frac{r_{2} - r_{1}}{r_{1}r_{2}}\frac{\rho}{4\pi}, nr

Answer

r2r_{2},r1r_{1}

Explanation

Solution

: In the parallel combination.

εeqreqε1r1+ε2r2+.....+εnrn\frac{\varepsilon_{eq}}{r_{eq}}\frac{\varepsilon 1}{r_{1}} + \frac{\varepsilon_{2}}{r_{2}} + ..... + \frac{\varepsilon n}{r_{n}}

4req=1r1+1r2+...+1rn\frac{4}{r_{eq}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} + ... + \frac{1}{r_{n}}

(ε1=ε2=ε3=....=εn=ε\because\varepsilon_{1} = \varepsilon_{2} = \varepsilon_{3} = .... = \varepsilon_{n} = \varepsilon and r1=r2=r3=....rn=rr_{1} = r_{2} = r_{3} = ....r_{n} = r)

εeqreq=εr+εr+....+εr=nεr\therefore\frac{\varepsilon_{eq}}{r_{eq}} = \frac{\varepsilon}{r} + \frac{\varepsilon}{r} + .... + \frac{\varepsilon}{r} = n\frac{\varepsilon}{r} …(i)

1req=1r+1r+....+1r=nr\frac{1}{r_{eq}} = \frac{1}{r} + \frac{1}{r} + .... + \frac{1}{r} = \frac{n}{r}

req=r/nr_{eq} = r/n …(ii)

From (i) and (ii),

εeq=nεr×req=n×εr×rn=ε\varepsilon_{eq} = n\frac{\varepsilon}{r} \times r_{eq} = n \times \frac{\varepsilon}{r} \times \frac{r}{n} = \varepsilon