Solveeit Logo

Question

Question: If \({}^n{C_4} = {}^n{C_6}\) , find \({}^{12}{C_n}\)....

If nC4=nC6{}^n{C_4} = {}^n{C_6} , find 12Cn{}^{12}{C_n}.

Explanation

Solution

We can expand the given equation using the expansion of combinations. Then we can simplify them using properties of factorials. Then we will obtain a quadratic equation. On solving we can obtain the value of n, then we can substitute the value of n in 12Cn{}^{12}{C_n} and find its value using the expansion of combinations.

Complete step by step solution:
We are given that nC4=nC6{}^n{C_4} = {}^n{C_6} .
We know that, the expansion of the combinations nCr{}^n{C_r} is given by,
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
On using this relation on the given equation, we get,
n!4!(n4)!=n!6!(n6)!\Rightarrow \dfrac{{n!}}{{4!\left( {n - 4} \right)!}} = \dfrac{{n!}}{{6!\left( {n - 6} \right)!}}
On cancelling the common terms, we get,
14!(n4)!=16!(n6)!\Rightarrow \dfrac{1}{{4!\left( {n - 4} \right)!}} = \dfrac{1}{{6!\left( {n - 6} \right)!}}
On cross multiplying, we get,
6!4!=(n4)!(n6)!\Rightarrow \dfrac{{6!}}{{4!}} = \dfrac{{\left( {n - 4} \right)!}}{{\left( {n - 6} \right)!}}
We know that n!=n×(n1)!n! = n \times \left( {n - 1} \right)! . On using this relation, we get,
6×5×4!4!=(n4)×(n5)×(n6)!(n6)!\Rightarrow \dfrac{{6 \times 5 \times 4!}}{{4!}} = \dfrac{{\left( {n - 4} \right) \times \left( {n - 5} \right) \times \left( {n - 6} \right)!}}{{\left( {n - 6} \right)!}}
On cancelling the common terms, we get,
6×5=(n4)×(n5)\Rightarrow 6 \times 5 = \left( {n - 4} \right) \times \left( {n - 5} \right)
On multiplication, we get,
30=n24n5n+20\Rightarrow 30 = {n^2} - 4n - 5n + 20
On rearranging, we get,
n29n+2030=0\Rightarrow {n^2} - 9n + 20 - 30 = 0
On simplifying we get,
n29n10=0\Rightarrow {n^2} - 9n - 10 = 0
Now we can solve the equation by factorisation.
For that we can split the middle term.
n210n+n10=0\Rightarrow {n^2} - 10n + n - 10 = 0
On taking the common factors from the 1st 2 and last 2 terms, we get,
n(n10)+(n10)=0\Rightarrow n\left( {n - 10} \right) + \left( {n - 10} \right) = 0
Again, by taking the common factors, we get,
(n+1)(n10)=0\Rightarrow \left( {n + 1} \right)\left( {n - 10} \right) = 0
So, we can say that either (n+1)=0\left( {n + 1} \right) = 0 or (n10)=0\left( {n - 10} \right) = 0
When (n+1)=0\left( {n + 1} \right) = 0 ,
n=1\Rightarrow n = - 1
This is not possible as n cannot be negative.
When (n10)=0\left( {n - 10} \right) = 0 ,
n=10\Rightarrow n = 10
Now we can substitute the value of n in 12Cn{}^{12}{C_n}
12C10=12!10!(1210)!\Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{10!\left( {12 - 10} \right)!}}
On simplification we get,
12C10=12!10!(2)!\Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{10!\left( 2 \right)!}}
We know that n!=n×(n1)!n! = n \times \left( {n - 1} \right)! . On using this relation, we get
12C10=12×11×10!10!×2\Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11 \times 10!}}{{10! \times 2}}
On cancelling the common terms, we get,
12C10=12×112\Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11}}{2}
On simplification, we get,
12C10=66\Rightarrow {}^{12}{C_{10}} = 66

So, the required value is 66.

Note:
Alternative method to solve this problem is given by,
We are given that nC4=nC6{}^n{C_4} = {}^n{C_6} .
We know that nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}} . On applying this on the RHS, we get,
nC4=nCn6\Rightarrow {}^n{C_4} = {}^n{C_{n - 6}}
Now we can equate the subscripts of the combination,
4=n6\Rightarrow 4 = n - 6
On rearranging, we get,
n=4+6\Rightarrow n = 4 + 6
On simplification we get,
n=10\Rightarrow n = 10
Now we can substitute the value of n in 12Cn{}^{12}{C_n}
12C10=12!10!(1210)!\Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{10!\left( {12 - 10} \right)!}}
On simplification we get,
12C10=12!10!(2)!\Rightarrow {}^{12}{C_{10}} = \dfrac{{12!}}{{10!\left( 2 \right)!}}
We know that n!=n×(n1)!n! = n \times \left( {n - 1} \right)! . On using this relation, we get
12C10=12×11×10!10!×2\Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11 \times 10!}}{{10! \times 2}}
On cancelling the common terms, we get,
12C10=12×112\Rightarrow {}^{12}{C_{10}} = \dfrac{{12 \times 11}}{2}
On simplification, we get,
12C10=66\Rightarrow {}^{12}{C_{10}} = 66
So, the required value is 66.