Question
Mathematics Question on Arithmetic Progression
If nC2 + nC3 = 6C3 and nCx = nC3, x ? 3, then the value of x is equal to
A
5
B
4
C
2
D
6
Answer
2
Explanation
Solution
The correct option is (C): 2
Given, nC2+nC3=6C3
⇒n=5[∵nCr+nCr−1=n+1Cr]
and nCx=nC3⇒5Cx=5C3
⇒x=5−3=2
[∵ If nCr1=nC12⇒ either r1=r2 or n=r1+r2]
The provided equations are:
- C(n ,2)+C(n ,3)=C(n ,3)
- C(n ,x)=C(n ,3)
Using the property of binomial coefficients, where C(n ,r)+C(n ,r −1)=C(n +1,r), we can deduce the value of n : From equation (1), we have C(n ,2)+C(n ,1)=C(n +1,2), which simplifies to n =5 since C(n ,2)+C(n ,1)=C(n +1,2).
Therefore, n =5.
Next, applying equation (2): C(n ,x)=C(n ,3), we find that C(5,x)=C(5,3).
Solving for x , we get 5 C(x ,3)=5 C(3,3), which leads to x =5−3=2.
Hence, the value of x is 2.