Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If n^nC2_2 + n^nC3_3 = 6^6C3_3 and n^nCx_x = n^nC3_3, x ? 3, then the value of x is equal to

A

5

B

4

C

2

D

6

Answer

2

Explanation

Solution

The correct option is (C): 2

Given, nC2+nC3=6C3{ }^{n} C_{2}+{ }^{n} C_{3}={ }^{6} C_{3}
n=5[nCr+nCr1=n+1Cr]\Rightarrow n=5 \left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right]
and nCx=nC35Cx=5C3{ }^{n} C_{x}={ }^{n} C_{3} \Rightarrow{ }^{5} C_{x}={ }^{5} C_{3}
x=53=2\Rightarrow x =5-3=2
[\left[\because\right. If nCr1=nC12{ }^{n} C_{r 1}={ }^{n} C_{12} \Rightarrow either r1=r2r_{1}=r_{2} or n=r1+r2]\left.n=r_{1}+r_{2}\right]

The provided equations are:

  1. C(n ,2)+C(n ,3)=C(n ,3)
  2. C(n ,x)=C(n ,3)

Using the property of binomial coefficients, where C(n ,r)+C(n ,r −1)=C(n +1,r), we can deduce the value of n : From equation (1), we have C(n ,2)+C(n ,1)=C(n +1,2), which simplifies to n =5 since C(n ,2)+C(n ,1)=C(n +1,2).

Therefore, n =5.

Next, applying equation (2): C(n ,x)=C(n ,3), we find that C(5,x)=C(5,3).

Solving for x , we get 5 C(x ,3)=5 C(3,3), which leads to x =5−3=2.

Hence, the value of x is 2.