Solveeit Logo

Question

Question: If \(n > 3\) and \(a,b\in R\), then the value of \(ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n...

If n>3n > 3 and a,bRa,b\in R, then the value of abn(a1)(b1)+n(n1)(a2)(b2)...+(1)n(an)(bn)1.2ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n\left( n-1 \right)\left( a-2 \right)\left( b-2 \right)...+{{\left( -1 \right)}^{n}}\left( a-n \right)\left( b-n \right)}{1.2} is equal to
(a) an+bn{{a}^{n}}+{{b}^{n}}
(b) anbnab\dfrac{{{a}^{n}}-{{b}^{n}}}{a-b}
(c) (ab)n{{\left( ab \right)}^{n}}
(d) 00

Explanation

Solution

We will solve this problem by using binomial theorem. For this, let us understand what a binomial theorem given by the formula(x+a)n=r=0nnCrxnrar{{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{a}^{r}}. Then, by taking abab common from the entire equation and by using the concept of combination to replace values like 1, n and so on as nC0=1,nC1=n,nC2=n(n1)2{}^{n}{{C}_{0}}=1,{}^{n}{{C}_{1}}=n,{}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2} andnCn=1{}^{n}{{C}_{n}}=1, we get the desired form. Then, by cancelling the common terms from numerator and denominator, we get the required answer.

Complete step by step answer:
We will solve this problem by using binomial theorem. For this, let us understand what a binomial theorem is.
According to Binomial theorem, if xx and aaare real numbers then for allnNn\in N,
(x+a)n=nC0xna0+nC1xn1a1+nC2xn2a2+...+nCrxnrar+...+nCn1x1an1+nCnx0an{{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{a}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+...+{}^{n}{{C}_{r}}{{x}^{n-r}}{{a}^{r}}+...+{}^{n}{{C}_{n-1}}{{x}^{1}}{{a}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{0}}{{a}^{n}} , i.e.,
(x+a)n=r=0nnCrxnrar{{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{a}^{r}}.
Now let us solve the given problem based on the Binomial theorem.
We have
abn(a1)(b1)+n(n1)(a2)(b2)...+(1)n(an)(bn)1.2ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n\left( n-1 \right)\left( a-2 \right)\left( b-2 \right)...+{{\left( -1 \right)}^{n}}\left( a-n \right)\left( b-n \right)}{1.2}
Then, by taking abab common from the entire equation, we get:
ab\left\\{ 1-n\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+\dfrac{n\left( n-1 \right)}{1.2}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\\}
Then, by using the concept of combination to replace values like 1, n and so on as:
nC0=1,nC1=n,nC2=n(n1)2{}^{n}{{C}_{0}}=1,{}^{n}{{C}_{1}}=n,{}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2} andnCn=1{}^{n}{{C}_{n}}=1.
Then, by substituting the above values in the expression, we get:
ab\left\\{ {}^{n}{{C}_{0}}1-{}^{n}{{C}_{1}}\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+{}^{n}{{C}_{2}}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\\}
\Rightarrow ab\left\\{ \dfrac{{{a}^{n}}-{{b}^{n}}}{ab\left( a-b \right)} \right\\}
Now, by cancelling the common terms from numerator and denominator, we get:
anbn(ab)\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}
So, we get the value of the given expression as anbn(ab)\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}.

So, the correct answer is “Option B”.

Note: Now, to solve these type of problems we need to know the basics of the combination given by the formula as for nCr{}^{n}{{C}_{r}} as nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}. Now, we must also know the formula for calculating the factorial of any number n by multiplying with (n-1) till it reaches 1. To understand let us find factorial of 3 as:
3!=3×2×1 6 \begin{aligned} & 3!=3\times 2\times 1 \\\ & \Rightarrow 6 \\\ \end{aligned}