Solveeit Logo

Question

Question: If \(n + 1C_{3} = 2^{n} ⥂ C_{2}\), then n =...

If n+1C3=2nC2n + 1C_{3} = 2^{n} ⥂ C_{2}, then n =

A

3

B

4

C

5

D

6

Answer

5

Explanation

Solution

n+1C3=2.nC2n + 1C_{3} = 2.^{n}C_{2}

(n+1)!3!(n2)!=2.n!2!(n2)!\frac{(n + 1)!}{3!(n - 2)!} = 2.\frac{n!}{2!(n - 2)!}n+13.2!=22!\frac{n + 1}{3.2!} = \frac{2}{2!}n+1=6n + 1 = 6n=5n = 5.