Question
Mathematics Question on Binomial theorem
If n = 1, 2, 3 ..., then cos cos2∝ cos4∝… cos 2n - 1 ∝is equal to
A
(A) sin2nα2nsinα
B
(B) sin2nα2nsin2n−1α
C
(C) sin4n−1α4n−1sinα
D
(D) sin2nα2nsinα
Answer
(D) sin2nα2nsinα
Explanation
Solution
Explanation:
Konsider the expression ⇒cosαcos2αcos4α……cos(2n−1)αMultiply and divide the expression by 2nsinα ⇒2n−12nsinα[2sinαcosαcos2αcos4α……cos(2n−1)α]⇒2n−22nsinα[2sin2αcos2αcos4α……cos(2n−1)α]⇒2n−32nsinα[2sin4αcos4α……cos(2n−1)α]⇒12nsinα[2sin2n−1αcos2n−1α]⇒12nsinαsin(2.2n−1α)⇒sin2nα2nsinα