Question
Mathematics Question on Trigonometric Functions
If n = 1 , 2, 3, ..... , then cosαcos2αcos22αcos23α......cos2n−1α is equal to
A
2nsinαsin2nα
B
2nsin2n−1αsin2nα
C
4n−1sinαsin4n−1α
D
2nsinαsin2nα
Answer
2nsinαsin2nα
Explanation
Solution
cosαcos2αcos22α....cos2n−1α =2nsinα2nsinαcosαcos2αcos22α...cos2n−1α = \frac{\sin \left\\{2\left(2^{n-1} \alpha \right)\right\\}}{2^{n}\sin\alpha } (using2sinθcosθ=sin2θagainandagain)