Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If n = 1 , 2, 3, ..... , then cosαcos2αcos22αcos23α......cos2n1α\cos \, \alpha \, \cos \, 2\alpha \, \cos \, 2^2 \alpha \, \cos \, 2^3 \, \alpha . ..... \cos \, 2^{n-1} \alpha is equal to

A

sin2nα2nsinα\frac{\sin \, 2n \, \alpha}{ 2 n \, \sin \alpha}

B

sin2nα2nsin2n1α\frac{\sin \, 2^n \, \alpha}{2^n \, \sin \, 2^{n -1} \,\alpha}

C

sin4n1α4n1sinα\frac{\sin \, 4^{n -1} \, \alpha}{4^{n -1} \sin \,\alpha}

D

sin2nα2nsinα\frac{\sin \, 2^n \, \alpha}{2^n \, \sin \, \alpha}

Answer

sin2nα2nsinα\frac{\sin \, 2^n \, \alpha}{2^n \, \sin \, \alpha}

Explanation

Solution

cosαcos2αcos22α....cos2n1α\cos\alpha \cos 2 \alpha \cos 2^{2} \alpha .... \cos 2^{n-1} \alpha =2nsinαcosαcos2αcos22α...cos2n1α2nsinα= \frac{2^{n} \sin\alpha \cos\alpha\cos 2 \alpha \cos 2^{2}\alpha ... \cos 2^{n-1} \alpha }{2^{n} \sin\alpha } = \frac{\sin \left\\{2\left(2^{n-1} \alpha \right)\right\\}}{2^{n}\sin\alpha } (using2sinθcosθ=sin2θagainandagain) \left(\text{using} \, 2 \sin\theta \cos \theta =\sin2 \theta \text{again} \, \text{and} \, \text{again} \right)