Solveeit Logo

Question

Physics Question on Electromagnetic waves

If μ0 \mu_{0} be the permeability and ε0\varepsilon_{0} be the permittivity of a medium, then its refractive index is given by

A

1μ0ε0\frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}

B

1μ0ε0\frac{1}{ \mu_{0}\varepsilon_{0} }

C

μ0ε0\sqrt{\mu_{0}\varepsilon_{0}}

D

μ0ε0\mu_{0}\varepsilon_{0}

Answer

μ0ε0\sqrt{\mu_{0}\varepsilon_{0}}

Explanation

Solution

Refractive index of medium is =cv= \frac{c}{v} where c=1μ0ε0c = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}} and v=1μ0ε0μrεrv = \frac{1}{\sqrt{\mu _{0}\varepsilon _{0}\mu_{r}\varepsilon_{r}}} μ=1/μ0ε01/μ0ε0μrεr=μrεr\therefore\quad\mu = \frac{1 /\sqrt{\mu _{0}\varepsilon _{0}}}{1 / \sqrt{\mu _{0}\varepsilon _{0}\mu _{r}\varepsilon _{r}}} = \sqrt{\mu _{r}\varepsilon _{r}} Given μr=μ0\mu_{r} = \mu_{0} and εr=ε0\varepsilon_{r} = \varepsilon_{0} then μ=μ0ε0\mu = \sqrt{\mu _{0}\varepsilon _{0}}