Solveeit Logo

Question

Question: If m<sub>1</sub> and m<sub>2</sub> are the slopes of the tangents to the hyperbola 16x<sup>2</sup> –...

If m1 and m2 are the slopes of the tangents to the hyperbola 16x2 –25y2 = 400 which pass through the point (6, 2) then the harmonic mean of m1 and m2 is-

A

35\frac{3}{5}

B

35\frac{- 3}{5}

C

53\frac{- 5}{3}

D

53\frac{5}{3}

Answer

53\frac{5}{3}

Explanation

Solution

16x2 – 25y2 = 400 Ž x225\frac{x^{2}}{25}y216\frac{y^{2}}{16}= 1

equation of tangent Ž y = mx ± 25m216\sqrt{25m^{2}–16}

it passes through the point (6, 2)

2 = 6m ± 25m216\sqrt{25m^{2}–16}Ž (2 – 6m)2 = 25m2 – 16

4 + 36m2 – 24m = 25m2 – 16

Ž 11m2 – 24m +20 = 0

m1 + m2 = 24/11; m1 m2 = 20/11

Harmonic mean of m1 & m2

H = 2m1m2m1+m2\frac{2m_{1}m_{2}}{m_{1} + m_{2}} = 2×201124/11\frac{2 \times \frac{20}{11}}{24/11}Ž H = 53\frac{5}{3}