Solveeit Logo

Question

Physics Question on Units and measurement

If momentum (p)(p), area (A)(A) and time (t)(t) are taken to be fundamental quantities, then energy has the dimensional formula

A

[p1A1t1][p^1\, A^{-1}\, t^{-1}]

B

[p2A1t1][p^2\, A^{1}\, t^{1}]

C

[p1A1/2t1][p^1\, A^{-1/2}\, t^{1}]

D

[p1A1/2t1][p^1\, A^{1/2}\, t^{-1}]

Answer

[p1A1/2t1][p^1\, A^{1/2}\, t^{-1}]

Explanation

Solution

Let, energy E=kpaAbtcE = k p ^{ a } A ^{ b } t ^{ c } \,\,...(i) where kk is a dimensionless constant of proportionality Equating dimensions on both sides of (i), we get [ML2T2]=[MLT1]a[M0L2T0]b[M0L0T]c\left[ M L ^{2} T ^{-2}\right]=\left[ M L T ^{-1}\right]^{ a }\left[ M ^{0} L ^{ 2 } T ^{0}\right]^{ b }\left[ M ^{0} L ^{0} T \right]^{ c } =[MaLa+2bTa+c]=\left[ M ^{ a } L ^{ a + 2 b } T ^{- a + c }\right] Applying the principle of homogeneity of dimensions, we get a=1a=1 \ldots (ii) a+2b=2a + 2 b = 2 ...(iii) a+c=2- a + c =- 2 ...(iv) On solving eqs. (ii), (iii) and (iv), we get a=1,b=12,c=1a =1, b =\frac{1}{2}, c =-1 [E]=[p1A1/2t1]\therefore[ E ]=\left[ p ^{1} A ^{1 / 2} t ^{-1}\right]