Solveeit Logo

Question

Physics Question on physical world

If momentum (P) (P), area (A)(A) and time (T)(T) are taken to be the fundamental quantities then the dimensional formula for energy is :

A

[PA1T2]\left[ PA ^{-1} T ^{-2}\right]

B

[PA1/2T1]\left[ PA ^{1 / 2} T ^{-1}\right]

C

[P2AT2]\left[ P ^{2} AT ^{-2}\right]

D

[P1/2AT1] \left[ P ^{1 / 2} AT ^{-1}\right]

Answer

[PA1/2T1]\left[ PA ^{1 / 2} T ^{-1}\right]

Explanation

Solution

Let [E]=[P]x[A]y[T]z[ E ]=[ P ]^{ x }[ A ]^{ y }[ T ]^{ z }
ML2T2=[MLT1]x[L2]y[T]zML ^{2} T ^{-2}=\left[ MLT ^{-1}\right]^{ x }\left[ L ^{2}\right]^{ y }[ T ]^{z}
ML2T2=MxLx+2yTx+2ML ^{2} T ^{-2}= M ^{ x } L ^{ x +2 y } T ^{- x +2}
x=1\rightarrow x =1
x+2y=2\rightarrow x +2 y =2
1+2y=21+2 y =2
y=12y =\frac{1}{2}
x+z=2\rightarrow- x + z =-2
1+z=2-1+ z =-2
z=1z =-1
[E]=[PA1/2T1][ E ]=\left[ PA ^{1 / 2} T ^{-1}\right]