Solveeit Logo

Question

Question: If \(\vec { A } \times \vec { B } = \vec { C }\)then which of the following statements is wrong...

If A×B=C\vec { A } \times \vec { B } = \vec { C }then which of the following statements is wrong

A

CA\vec { C } \perp \vec { A }

B

CB\vec { C } \perp \vec { B }

C

C(A+B)\vec { C } \perp ( \vec { A } + \vec { B } )

D

C(A×B)\vec { C } \perp ( \vec { A } \times \vec { B } )

Answer

C(A×B)\vec { C } \perp ( \vec { A } \times \vec { B } )

Explanation

Solution

From the property of vector product, we notice that (A×B)( \vec { A } \times \vec { B } ) gives a vector C\vec { C } which can not be perpendicular to itself. Thus the last statement is wrong.