Solveeit Logo

Question

Question: If \(\log _ { \sqrt { 3 } }\) \(\left( \frac{|z|^{2} - |z| + 1}{2 + |z|} \right)\)\< 2, then the loc...

If log3\log _ { \sqrt { 3 } } (z2z+12+z)\left( \frac{|z|^{2} - |z| + 1}{2 + |z|} \right)< 2, then the locus of z is –

A

|z| = 5

B

|z| < 5

C

|z| > 5

D

None of these

Answer

|z| < 5

Explanation

Solution

Sol. We havelog3\log _ { \sqrt { 3 } } (z2z+12+z)\left( \frac{|z|^{2} - |z| + 1}{2 + |z|} \right) < 2 … (1)

Let log3\log _ { \sqrt { 3 } } (z2z+12+z)\left( \frac{|z|^{2} - |z| + 1}{2 + |z|} \right) = k … (2)

\ (3)k(\sqrt{3})^{k}= z2z+12+z\frac{|z|^{2} - |z| + 1}{2 + |z|} … (3)

(2) Ž k < 2 Ž (3)k(\sqrt{3})^{k}< (3\sqrt{3})2

(3) Ž z2z+12+z\frac{|z|^{2} - |z| + 1}{2 + |z|} < 3

Ž |z|2 – |z| + 1 < 6 + 3 |z|

Ž |z|2 – 4 |z| – 5 < 0

Ž (|z| – 5) (|z| + 1) < 0

Ž |z| – 5 < 0, |z| + 1 > 0

Ž |z| < 5, |z| > –1 Ž |z| < 5 .