Solveeit Logo

Question

Question: If \(\sin x + \cos x - 2 \sqrt { 2 } \sin x \cos x = 0\) then the general solution of x is...

If sinx+cosx22sinxcosx=0\sin x + \cos x - 2 \sqrt { 2 } \sin x \cos x = 0 then the general solution of x is

A

x=2nπ+π4x = 2 n \pi + \frac { \pi } { 4 }

B

x=nπ+(1)nπ6π4x = n \pi + ( - 1 ) ^ { n } \frac { \pi } { 6 } - \frac { \pi } { 4 }

C

Both (1) and (2)

D

None of these

Answer

Both (1) and (2)

Explanation

Solution

Let (sinx+cosx)=t( \sin x + \cos x ) = t and using the equation

sinxcosx=t212\sin x \cdot \cos x = \frac { t ^ { 2 } - 1 } { 2 } we get t22(t212)=0t - 2 \sqrt { 2 } \left( \frac { t ^ { 2 } - 1 } { 2 } \right) = 0

2t2t2=0\sqrt { 2 } t ^ { 2 } - t - \sqrt { 2 } = 0

The numbers t1=2,t2=12t _ { 1 } = \sqrt { 2 } , t _ { 2 } = - \frac { 1 } { \sqrt { 2 } } are roots of this quadratic

equation.

Thus the solution of the given equation reduces to the solution of two trigonometrical equation;

sinx+cosx=12\sin x + \cos x = - \frac { 1 } { \sqrt { 2 } }

or12sinx+12cosx=1\frac { 1 } { \sqrt { 2 } } \sin x + \frac { 1 } { \sqrt { 2 } } \cos x = 1 or 12sinx+12cosx=12\frac { 1 } { \sqrt { 2 } } \sin x + \frac { 1 } { \sqrt { 2 } } \cos x = - \frac { 1 } { 2 }

or sinxcosπ4+sinπ4cosx=1\sin x \cdot \cos \frac { \pi } { 4 } + \sin \frac { \pi } { 4 } \cos x = 1or

sinxcosπ4+sinπ4cosx=12\sin x \cos \frac { \pi } { 4 } + \sin \frac { \pi } { 4 } \cos x = - \frac { 1 } { 2 }

sin(x+π4)=1\sin \left( x + \frac { \pi } { 4 } \right) = 1 or sin(x+π4)=12\sin \left( x + \frac { \pi } { 4 } \right) = - \frac { 1 } { 2 }

x+π4=(4n+1)π2x + \frac { \pi } { 4 } = ( 4 n + 1 ) \frac { \pi } { 2 } or x+π4=nπ+(1)n(π6)x + \frac { \pi } { 4 } = n \pi + ( - 1 ) ^ { n } \cdot \left( \frac { \pi } { 6 } \right)

x=2nπ+π4x = 2 n \pi + \frac { \pi } { 4 } or x=nπ+(1)nπ6(π4)x = n \pi + ( - 1 ) ^ { n } \frac { \pi } { 6 } - \left( \frac { \pi } { 4 } \right) .