Question
Question: If \(\sin x + \cos x - 2 \sqrt { 2 } \sin x \cos x = 0\) then the general solution of x is...
If sinx+cosx−22sinxcosx=0 then the general solution of x is
A
x=2nπ+4π
B
x=nπ+(−1)n6π−4π
C
Both (1) and (2)
D
None of these
Answer
Both (1) and (2)
Explanation
Solution
Let (sinx+cosx)=t and using the equation
sinx⋅cosx=2t2−1 we get t−22(2t2−1)=0
2t2−t−2=0
The numbers t1=2,t2=−21 are roots of this quadratic
equation.
Thus the solution of the given equation reduces to the solution of two trigonometrical equation;
sinx+cosx=−21
or21sinx+21cosx=1 or 21sinx+21cosx=−21
or sinx⋅cos4π+sin4πcosx=1or
sinxcos4π+sin4πcosx=−21
sin(x+4π)=1 or sin(x+4π)=−21
x+4π=(4n+1)2π or x+4π=nπ+(−1)n⋅(6π)
x=2nπ+4π or x=nπ+(−1)n6π−(4π) .