Solveeit Logo

Question

Question: If \(\sin ^ { - 1 } a + \sin ^ { - 1 } b + \sin ^ { - 1 } c = \pi\) then the value of. \(a \sqrt {...

If sin1a+sin1b+sin1c=π\sin ^ { - 1 } a + \sin ^ { - 1 } b + \sin ^ { - 1 } c = \pi then the value of.

a(1a2)+b(1b2)+c(1c2)a \sqrt { \left( 1 - a ^ { 2 } \right) } + b \sqrt { \left( 1 - b ^ { 2 } \right) } + c \sqrt { \left( 1 - c ^ { 2 } \right) } will be.

A

2abc2 a b c

B

abca b c

C

12abc\frac { 1 } { 2 } a b c

D

13abc\frac { 1 } { 3 } a b c

Answer

2abc2 a b c

Explanation

Solution

Let

sin1b=B\sin ^ { - 1 } b = B

sin1c=C\sin ^ { - 1 } c = C

sinA=a,sinB=b,sinC=c\therefore \sin A = a , \sin B = b , \sin C = c

And then

sin2A+sin2B+sin2C\sin 2 A + \sin 2 B + \sin 2 C

=4sinAsinBsinC= 4 \sin A \sin B \sin C …..(i)

sinAcosA+sinBcosB+sinCcosC\sin A \cos A + \sin B \cos B + \sin C \cos C

= 2sinAsinBsinC2 \sin A \sin B \sin C

sinA(1sin2A)+sinB(1sin2B)+sinC1sin2C\sin A \sqrt { \left( 1 - \sin ^ { 2 } A \right) } + \sin B \sqrt { \left( 1 - \sin ^ { 2 } B \right) } + \sin C \sqrt { 1 - \sin ^ { 2 } C }

……(ii)

a(1a2)+b(1b2)+c(1c)2=2abca \sqrt { \left( 1 - a ^ { 2 } \right) } + b \sqrt { \left( 1 - b ^ { 2 } \right) } + c \sqrt { ( 1 - c ) ^ { 2 } } = 2 a b c,

While sin1a+sin1b+sin1c=π\sin ^ { - 1 } a + \sin ^ { - 1 } b + \sin ^ { - 1 } c = \pi.