Solveeit Logo

Question

Question: If \(k \leq \sin ^ { - 1 } x + \cos ^ { - 1 } x + \tan ^ { - 1 } x \leq K\)then....

If ksin1x+cos1x+tan1xKk \leq \sin ^ { - 1 } x + \cos ^ { - 1 } x + \tan ^ { - 1 } x \leq Kthen.

A

k=0,K=πk = 0 , K = \pi

B

k=0,K=π2k = 0 , K = \frac { \pi } { 2 }

C

k=π2,K=πk = \frac { \pi } { 2 } , K = \pi

D

None of these

Answer

k=0,K=πk = 0 , K = \pi

Explanation

Solution

We have

sin1x+cos1x+tan1x=π2+tan1x\sin ^ { - 1 } x + \cos ^ { - 1 } x + \tan ^ { - 1 } x = \frac { \pi } { 2 } + \tan ^ { - 1 } x

Since π2tan1xπ20π2+tan1xπ\frac { - \pi } { 2 } \leq \tan ^ { - 1 } x \leq \frac { \pi } { 2 } \Rightarrow 0 \leq \frac { \pi } { 2 } + \tan ^ { - 1 } x \leq \pi

K=π,k=0K = \pi , k = 0.