Solveeit Logo

Question

Question: If \(\cos ^ { - 1 } x + \cos ^ { - 1 } y = 2 \pi\)then \(\sin ^ { - 1 } x + \sin ^ { - 1 } y\) is e...

If cos1x+cos1y=2π\cos ^ { - 1 } x + \cos ^ { - 1 } y = 2 \pithen sin1x+sin1y\sin ^ { - 1 } x + \sin ^ { - 1 } y is equal to.

A

π\pi

B

π- \pi

C

π2\frac { \pi } { 2 }

D

None of these

Answer

π- \pi

Explanation

Solution

cos1x+cos1y=2π\cos ^ { - 1 } x + \cos ^ { - 1 } y = 2 \pi

π2sin1x+π2sin1y=2π\Rightarrow \frac { \pi } { 2 } - \sin ^ { - 1 } x + \frac { \pi } { 2 } - \sin ^ { - 1 } y = 2 \pi

π(sin1x+sin1y)=2π\Rightarrow \pi - \left( \sin ^ { - 1 } x + \sin ^ { - 1 } y \right) = 2 \pi

sin1x+sin1y=π\Rightarrow \sin ^ { - 1 } x + \sin ^ { - 1 } y = - \pi