Solveeit Logo

Question

Question: If \(\tan ^ { - 1 } ( x - 1 ) + \tan ^ { - 1 } x + \tan ^ { - 1 } ( x + 1 ) = \tan ^ { - 1 } 3 x\),t...

If tan1(x1)+tan1x+tan1(x+1)=tan13x\tan ^ { - 1 } ( x - 1 ) + \tan ^ { - 1 } x + \tan ^ { - 1 } ( x + 1 ) = \tan ^ { - 1 } 3 x,then x =

A

±12\pm \frac { 1 } { 2 }

B

0,120 , \frac { 1 } { 2 }

C

0,120 , - \frac { 1 } { 2 }

D

0,±120 , \pm \frac { 1 } { 2 }

Answer

0,±120 , \pm \frac { 1 } { 2 }

Explanation

Solution

tan1(x1)+tan1(x)+tan1(x+1)=tan13x\tan ^ { - 1 } ( x - 1 ) + \tan ^ { - 1 } ( x ) + \tan ^ { - 1 } ( x + 1 ) = \tan ^ { - 1 } 3 x

tan1(x1)+tan1(x)=tan13xtan1(x+1)\Rightarrow \tan ^ { - 1 } ( x - 1 ) + \tan ^ { - 1 } ( x ) = \tan ^ { - 1 } 3 x - \tan ^ { - 1 } ( x + 1 )

tan1[(x1)+x1(x1)(x)]=tan1[3x(x+1)1+3x(x+1)]\Rightarrow \tan ^ { - 1 } \left[ \frac { ( x - 1 ) + x } { 1 - ( x - 1 ) ( x ) } \right] = \tan ^ { - 1 } \left[ \frac { 3 x - ( x + 1 ) } { 1 + 3 x ( x + 1 ) } \right]

2x11x2+x=2x11+3x2+3x\Rightarrow \frac { 2 x - 1 } { 1 - x ^ { 2 } + x } = \frac { 2 x - 1 } { 1 + 3 x ^ { 2 } + 3 x }

(1x2+x)(2x1)=(1+3x2+3x)(2x1)\Rightarrow \left( 1 - x ^ { 2 } + x \right) ( 2 x - 1 ) = \left( 1 + 3 x ^ { 2 } + 3 x \right) ( 2 x - 1 )

On simplification x=0,±12x = 0 , \pm \frac { 1 } { 2 }