Question
Question: If \(\tan ^ { - 1 } ( x - 1 ) + \tan ^ { - 1 } x + \tan ^ { - 1 } ( x + 1 ) = \tan ^ { - 1 } 3 x\),t...
If tan−1(x−1)+tan−1x+tan−1(x+1)=tan−13x,then x =
A
±21
B
0,21
C
0,−21
D
0,±21
Answer
0,±21
Explanation
Solution
tan−1(x−1)+tan−1(x)+tan−1(x+1)=tan−13x
⇒tan−1(x−1)+tan−1(x)=tan−13x−tan−1(x+1)
⇒tan−1[1−(x−1)(x)(x−1)+x]=tan−1[1+3x(x+1)3x−(x+1)]
⇒1−x2+x2x−1=1+3x2+3x2x−1
⇒(1−x2+x)(2x−1)=(1+3x2+3x)(2x−1)
On simplification x=0,±21