Solveeit Logo

Question

Question: If \(\tan ^ { - 1 } 2 x + \tan ^ { - 1 } 3 x = \frac { \pi } { 4 }\), then x =...

If tan12x+tan13x=π4\tan ^ { - 1 } 2 x + \tan ^ { - 1 } 3 x = \frac { \pi } { 4 }, then x =

A

– 1

B

16\frac { 1 } { 6 }

C

1,16- 1 , \frac { 1 } { 6 }

D

None of these

Answer

16\frac { 1 } { 6 }

Explanation

Solution

tan12x+tan13x=π4\tan ^ { - 1 } 2 x + \tan ^ { - 1 } 3 x = \frac { \pi } { 4 } tan1(2x+3x1(2x)(3x))=π4\Rightarrow \tan ^ { - 1 } \left( \frac { 2 x + 3 x } { 1 - ( 2 x ) ( 3 x ) } \right) = \frac { \pi } { 4 }

tan1(5x16x2)=tan1(1)\Rightarrow \tan ^ { - 1 } \left( \frac { 5 x } { 1 - 6 x ^ { 2 } } \right) = \tan ^ { - 1 } ( 1 ) 5x16x2=1\Rightarrow \frac { 5 x } { 1 - 6 x ^ { 2 } } = 1

16x2=5x\Rightarrow 1 - 6 x ^ { 2 } = 5 x 6x2+5x1=0\Rightarrow 6 x ^ { 2 } + 5 x - 1 = 0

(x+1)(x16)=0\Rightarrow ( x + 1 ) \left( x - \frac { 1 } { 6 } \right) = 0 x=1,16\Rightarrow x = - 1 , \frac { 1 } { 6 }

But – 1 does not hold.

Trick : Check with the options. Obviously the equation holds for x=16x = \frac { 1 } { 6 } , but not for – 1.