Question
Question: If \(\tan ^ { - 1 } x + \tan ^ { - 1 } y + \tan ^ { - 1 } z = \frac { \pi } { 2 }\)then...
If tan−1x+tan−1y+tan−1z=2πthen
A
x+y+z−xyz=0
B
x+y+z+xyz=0
C
xy+yz+zx+1=0
D
xy+yz+zx−1=0
Answer
xy+yz+zx−1=0
Explanation
Solution
Given that
tan−1x+tan−1y+tan−1z=2π
⇒[1−xy−yz−zxx+y+z−xyz]=tan2π=01
Hence xy+yz+zx−1=0.
Trick : x=y=z=31 so that
tan−131+tan−131+tan−131=2π
Obviously (4) holds for these values of x, y, z