Solveeit Logo

Question

Question: If \(\tan ^ { - 1 } x + \tan ^ { - 1 } y + \tan ^ { - 1 } z = \frac { \pi } { 2 }\)then...

If tan1x+tan1y+tan1z=π2\tan ^ { - 1 } x + \tan ^ { - 1 } y + \tan ^ { - 1 } z = \frac { \pi } { 2 }then

A

x+y+zxyz=0x + y + z - x y z = 0

B

x+y+z+xyz=0x + y + z + x y z = 0

C

xy+yz+zx+1=0x y + y z + z x + 1 = 0

D

xy+yz+zx1=0x y + y z + z x - 1 = 0

Answer

xy+yz+zx1=0x y + y z + z x - 1 = 0

Explanation

Solution

Given that

tan1x+tan1y+tan1z=π2\tan ^ { - 1 } x + \tan ^ { - 1 } y + \tan ^ { - 1 } z = \frac { \pi } { 2 }

[x+y+zxyz1xyyzzx]=tanπ2=10\Rightarrow \left[ \frac { x + y + z - x y z } { 1 - x y - y z - z x } \right] = \tan \frac { \pi } { 2 } = \frac { 1 } { 0 }

Hence xy+yz+zx1=0x y + y z + z x - 1 = 0.

Trick : x=y=z=13x = y = z = \frac { 1 } { \sqrt { 3 } } so that

tan113+tan113+tan113=π2\tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } + \tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } + \tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } = \frac { \pi } { 2 }

Obviously (4) holds for these values of x, y, z