Solveeit Logo

Question

Question: If \(x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x y z\)is equal to....

If x2+y2+z2+2xyzx ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x y zis equal to.

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

sin1x+sin1y+sin1z=π2\sin ^ { - 1 } x + \sin ^ { - 1 } y + \sin ^ { - 1 } z = \frac { \pi } { 2 }

Put sin1x=α\sin ^ { - 1 } x = \alpha, sin1y=β\sin ^ { - 1 } y = \beta sin1z=γ\sin ^ { - 1 } z = \gamma

α+β+γ=π2\alpha + \beta + \gamma = \frac { \pi } { 2 }, (Given)

or α+β=π2γ\alpha + \beta = \frac { \pi } { 2 } - \gamma or cos(α+β)=cos(π2γ)\cos ( \alpha + \beta ) = \cos \left( \frac { \pi } { 2 } - \gamma \right)

cosαcosβsinαsinβ=sinγ\cos \alpha \cos \beta - \sin \alpha \sin \beta = \sin \gamma …..(i)

and, we have sinα=x\sin \alpha = xcosα=1x2\cos \alpha = \sqrt { 1 - x ^ { 2 } }

Similarly, cosβ=1y2\cos \beta = \sqrt { 1 - y ^ { 2 } }

\therefore From equation (i), we get 1x21y2=xy+z\sqrt { 1 - x ^ { 2 } } \cdot \sqrt { 1 - y ^ { 2 } } = x y + z

Squaring both sides, we have x2+y2+z2+2xyz=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x y z = 1 .