Solveeit Logo

Question

Question: If \(\sin ^ { - 1 } x = \theta + \beta\)and \(1 + x y =\)...

If sin1x=θ+β\sin ^ { - 1 } x = \theta + \betaand 1+xy=1 + x y =

A

sin2θ+sin2β\sin ^ { 2 } \theta + \sin ^ { 2 } \beta

B

sin2θ+cos2β\sin ^ { 2 } \theta + \cos ^ { 2 } \beta

C

cos2θ+cos2β\cos ^ { 2 } \theta + \cos ^ { 2 } \beta

D

cos2θ+sin2β\cos ^ { 2 } \theta + \sin ^ { 2 } \beta

Answer

sin2θ+cos2β\sin ^ { 2 } \theta + \cos ^ { 2 } \beta

Explanation

Solution

Obviously x=sin(θ+β)x = \sin ( \theta + \beta ) and

y=sin(θβ)y = \sin ( \theta - \beta )

1+xy=1+sin(θ+β)sin(θβ)\therefore 1 + x y = 1 + \sin ( \theta + \beta ) \sin ( \theta - \beta )

=1+sin2θsin2β=sin2θ+cos2β= 1 + \sin ^ { 2 } \theta - \sin ^ { 2 } \beta = \sin ^ { 2 } \theta + \cos ^ { 2 } \beta.