Solveeit Logo

Question

Question: If \(\tan ^ { - 1 } x + \tan ^ { - 1 } y = \frac { \pi } { 4 }\) then....

If tan1x+tan1y=π4\tan ^ { - 1 } x + \tan ^ { - 1 } y = \frac { \pi } { 4 } then.

A

x+y+xy=1x + y + x y = 1

B

x+yxy=1x + y - x y = 1

C

x+y+xy+1=0x + y + x y + 1 = 0

D

x+yxy+1=0x + y - x y + 1 = 0

Answer

x+yxy=1x + y - x y = 1

Explanation

Solution

tan1(x+y1xy)=tan11\tan ^ { - 1 } \left( \frac { x + y } { 1 - x y } \right) = \tan ^ { - 1 } 1

x+y+xy=1x + y + x y = 1.