Solveeit Logo

Question

Question: If \(4 \sin ^ { - 1 } x + \cos ^ { - 1 } x = \pi\)then \(x\) is equal to....

If 4sin1x+cos1x=π4 \sin ^ { - 1 } x + \cos ^ { - 1 } x = \pithen xx is equal to.

A

0

B

12\frac { 1 } { 2 }

C

32- \frac { \sqrt { 3 } } { 2 }

D

12\frac { 1 } { \sqrt { 2 } }

Answer

12\frac { 1 } { 2 }

Explanation

Solution

We know that 4sin1x+cos1x=π4 \sin ^ { - 1 } x + \cos ^ { - 1 } x = \pi

3sin1x+sin1x+cos1x=π3 \sin ^ { - 1 } x + \sin ^ { - 1 } x + \cos ^ { - 1 } x = \pi

3sin1x=ππ2=π23 \sin ^ { - 1 } x = \pi - \frac { \pi } { 2 } = \frac { \pi } { 2 }

sin1x=π/6\sin ^ { - 1 } x = \pi / 6x=sinπ6=12x = \sin \frac { \pi } { 6 } = \frac { 1 } { 2 } .