Solveeit Logo

Question

Question: If \(\left( \tan ^ { - 1 } x \right) ^ { 2 } + \left( \cot ^ { - 1 } x \right) ^ { 2 } = \frac { 5 \...

If (tan1x)2+(cot1x)2=5π28\left( \tan ^ { - 1 } x \right) ^ { 2 } + \left( \cot ^ { - 1 } x \right) ^ { 2 } = \frac { 5 \pi ^ { 2 } } { 8 }then xx equals.

A

–1

B

1

C

0

D

None of these

Answer

–1

Explanation

Solution

(tan1x)2+(cot1x)2=5π28\left( \tan ^ { - 1 } x \right) ^ { 2 } + \left( \cot ^ { - 1 } x \right) ^ { 2 } = \frac { 5 \pi ^ { 2 } } { 8 }

(tan1x+cot1x)22tan1x(π2tan1x)=5π28\left( \tan ^ { - 1 } x + \cot ^ { - 1 } x \right) ^ { 2 } - 2 \tan ^ { - 1 } x \left( \frac { \pi } { 2 } - \tan ^ { - 1 } x \right) = \frac { 5 \pi ^ { 2 } } { 8 }

π242×π2tan1x+2(tan1x)2=5π28\frac { \pi ^ { 2 } } { 4 } - 2 \times \frac { \pi } { 2 } \tan ^ { - 1 } x + 2 \left( \tan ^ { - 1 } x \right) ^ { 2 } = \frac { 5 \pi ^ { 2 } } { 8 }

2(tan1x)2πtan1x3π28=02 \left( \tan ^ { - 1 } x \right) ^ { 2 } - \pi \tan ^ { - 1 } x - \frac { 3 \pi ^ { 2 } } { 8 } = 0

tan1x=π4x=1\tan ^ { - 1 } x = - \frac { \pi } { 4 } \Rightarrow x = - 1.