Solveeit Logo

Question

Question: If ![](https://cdn.pureessence.tech/canvas_404.png?top_left_x=0&top_left_y=1473&width=300&height=84)...

If then 9x212xycosθ+4y2=9 x ^ { 2 } - 12 x y \cos \theta + 4 y ^ { 2 } =

A

36sin2θ36 \sin ^ { 2 } \theta

B

36cos2θ36 \cos ^ { 2 } \theta

C

36tan2θ36 \tan ^ { 2 } \theta

D

None of these

Answer

36sin2θ36 \sin ^ { 2 } \theta

Explanation

Solution

cos1x2+cos1y3=θ\cos ^ { - 1 } \frac { x } { 2 } + \cos ^ { - 1 } \frac { y } { 3 } = \theta

x2y3(1x24)(1y29)=cosθ\frac { x } { 2 } \cdot \frac { y } { 3 } - \sqrt { \left( 1 - \frac { x ^ { 2 } } { 4 } \right) } \sqrt { \left( 1 - \frac { y ^ { 2 } } { 9 } \right) } = \cos \theta

\therefore (xy6cosθ)2=(4x2)(9y2)( x y - 6 \cos \theta ) ^ { 2 } = \left( 4 - x ^ { 2 } \right) \left( 9 - y ^ { 2 } \right)

9x212xycosθ+4y2=36(1cos2θ)=36sin2θ9 x ^ { 2 } - 12 x y \cos \theta + 4 y ^ { 2 } = 36 \left( 1 - \cos ^ { 2 } \theta \right) = 36 \sin ^ { 2 } \theta