Solveeit Logo

Question

Question: If \(Y = \{ 49 ( n - 1 ) : n \in N \}\) then...

If Y={49(n1):nN}Y = \{ 49 ( n - 1 ) : n \in N \} then

A

XYX \subseteq Y

B

YXY \subseteq X

C

X=YX = Y

D

None of these

Answer

XYX \subseteq Y

Explanation

Solution

Since 8n7n1=(7+1)n7n18 ^ { n } - 7 n - 1 = ( 7 + 1 ) ^ { n } - 7 n - 1

=

=

( nC0=nCn,nC1=nCn1{ } ^ { n } C _ { 0 } = { } ^ { n } C _ { n } , { } ^ { n } C _ { 1 } = { } ^ { n } C _ { n - 1 } etc.)

= \therefore 8n7n18 ^ { n } - 7 n - 1 is amultiple of 49 for n2n \geq 2.

For n=1n = 1 , 8n7n1=871=08 ^ { n } - 7 n - 1 = 8 - 7 - 1 = 0; For n=2n = 2

8n7n1=64141=498 ^ { n } - 7 n - 1 = 64 - 14 - 1 = 49 \therefore 8n7n18 ^ { n } - 7 n - 1 is a multiple of 49 for all

\therefore X contains elements which are multiples of 49 and clearly Y contains all multiplies of 49.

\therefore XYX \subseteq Y.