Solveeit Logo

Question

Question: If \(Y = \{ 9 ( n - 1 ) : n \in N \}\) then \(X \cup Y\) is equal to...

If Y={9(n1):nN}Y = \{ 9 ( n - 1 ) : n \in N \} then XYX \cup Y is equal to

A

X

B

Y

C

N

D

None of these

Answer

Y

Explanation

Solution

Since, 4n3n1=(3+1)n3n14 ^ { n } - 3 n - 1 = ( 3 + 1 ) ^ { n } - 3 n - 1

=

=

(

= \therefore 4n3n14 ^ { n } - 3 n - 1 is a multiple of 9 for n2n \geq 2.

For n=1n = 1 431=04 - 3 - 1 = 0, For n=2n = 2 4n3n14 ^ { n } - 3 n - 1= 1661=916 - 6 - 1 = 9

\therefore 4n3n14 ^ { n } - 3 n - 1 is a multiple of 9 for all nNn \in N

\therefore X contains elements which are multiples of 9 and clearly Y contains all multiples of 9.

\therefore XYX \subseteq Y ,

\therefore XY=YX \cup Y = Y .