Solveeit Logo

Question

Question: If \(\left( \frac { a } { b } \right) ^ { 1 / 3 } + \left( \frac { b } { a } \right) ^ { 1 / 3 } = \...

If (ab)1/3+(ba)1/3=32\left( \frac { a } { b } \right) ^ { 1 / 3 } + \left( \frac { b } { a } \right) ^ { 1 / 3 } = \frac { \sqrt { 3 } } { 2 }, then the angle of intersection of the parabola y2=4axy ^ { 2 } = 4 a x and x2=4byx ^ { 2 } = 4 b y at a point other than the origin is

A

π/4\pi / 4

B

π/3\pi / 3

C

π/2\pi / 2

D

None

Answer

π/3\pi / 3

Explanation

Solution

Given parabolas are y2=4axy ^ { 2 } = 4 a x ....(i) and x2=4byx ^ { 2 } = 4 b y .....(ii)

These meet at the points (0, 0), (4a1/3b2/3,4a2/3b1/3)\left( 4 a ^ { 1 / 3 } b ^ { 2 / 3 } , 4 a ^ { 2 / 3 } b ^ { 1 / 3 } \right)

Tangent to (i) at (4a1/3b2/3,4a2/3b1/3)\left( 4 a ^ { 1 / 3 } b ^ { 2 / 3 } , 4 a ^ { 2 / 3 } b ^ { 1 / 3 } \right)is

Slope of the tangent

=a1/32b1/3= \frac { a ^ { 1 / 3 } } { 2 b ^ { 1 / 3 } }

Tangent to (ii) at (4a1/3b2/3,4a2/3b1/3)\left( 4 a ^ { 1 / 3 } b ^ { 2 / 3 } , 4 a ^ { 2 / 3 } b ^ { 1 / 3 } \right)is

Slope of the tangent (m2)\left( m _ { 2 } \right) =2a1/3b1/3= \frac { 2 a ^ { 1 / 3 } } { b ^ { 1 / 3 } }

If θ\theta is the angle between the two tangents, then

=321(ab)1/3+(ba)1/3=32132=3= \frac { 3 } { 2 } \cdot \frac { 1 } { \left( \frac { a } { b } \right) ^ { 1 / 3 } + \left( \frac { b } { a } \right) ^ { 1 / 3 } } = \frac { 3 } { 2 } \cdot \frac { 1 } { \frac { \sqrt { 3 } } { 2 } } = \sqrt { 3 }; ∴θ=60=π3\theta = 60 ^ { \circ } = \frac { \pi } { 3 }