Solveeit Logo

Question

Question: If \(f ( x ) = \left\{ \begin{array} { c c } e ^ { \cos x } \sin x , & | x | \leq 2 \\ 2 , & \text {...

If f(x)={ecosxsinx,x22, otherwise f ( x ) = \left\{ \begin{array} { c c } e ^ { \cos x } \sin x , & | x | \leq 2 \\ 2 , & \text { otherwise } \end{array} \right., then 23f(x)dx\int _ { - 2 } ^ { 3 } f ( x ) d x is equal to

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

23f(x)dx=22f(x)dx+23f(x)dx\int _ { - 2 } ^ { 3 } f ( x ) d x = \int _ { - 2 } ^ { 2 } f ( x ) d x + \int _ { 2 } ^ { 3 } f ( x ) d x

ecosxsinxe ^ { \cos x } \sin xis an odd function

23f(x)dx=22ecosxsinxdx+232dx=0+2(32)=2\therefore \int _ { - 2 } ^ { 3 } f ( x ) d x = \int _ { - 2 } ^ { 2 } e ^ { \cos x } \sin x d x + \int _ { 2 } ^ { 3 } 2 d x = 0 + 2 ( 3 - 2 ) = 2 .