Question
Question: If \(| m | \neq | n |\) then \(\int _ { 0 } ^ { \pi } \cos m x \sin n x d x\) is...
If ∣m∣=∣n∣ then ∫0πcosmxsinnxdx is
A
n2−m22n
B
0
C
m2−n22n
D
n2−m22m
Answer
n2−m22n
Explanation
Solution
I=21∫0π[sin(m+n)x−sin(m−n)x]dx
=−21[m+ncos(m+n)x−m−ncos(m−n)x]0π
Since n – m is odd, therefore n+m must be odd, so (−1)m+n=(−1)m−n=−1 .
Also, since ∣m∣∄n∣,m+n=0,m−n=0
∴ I=m+n1−m−n1=m2−n2m+n−m−n=n2−m22n .