Solveeit Logo

Question

Question: If ![](https://cdn.pureessence.tech/canvas_656.png?top_left_x=592&top_left_y=646&width=300&height=54...

If then abxf(x)dx=\int _ { a } ^ { b } x f ( x ) d x =

A

a+b2abf(bx)dx\frac { a + b } { 2 } \int _ { a } ^ { b } f ( b - x ) d x

B

a+b2abf(x)dx\frac { a + b } { 2 } \int _ { a } ^ { b } f ( x ) d x

C

ba2abf(x)dx\frac { b - a } { 2 } \int _ { a } ^ { b } f ( x ) d x

D

None of these

Answer

a+b2abf(x)dx\frac { a + b } { 2 } \int _ { a } ^ { b } f ( x ) d x

Explanation

Solution

Since I=abxf(x)dx=ab(a+bx)f(a+bx)dxI = \int _ { a } ^ { b } x f ( x ) d x = \int _ { a } ^ { b } ( a + b - x ) f ( a + b - x ) d x

I=ab(a+b)f(x)dxabxf(x)dxI = \int _ { a } ^ { b } ( a + b ) f ( x ) d x - \int _ { a } ^ { b } x f ( x ) d x

{f(a+bx)=f(x)\{ \because f ( a + b - x ) = f ( x ) given }\}

I=abxf(x)dx=a+b2abf(x)dxI = \int _ { a } ^ { b } x f ( x ) d x = \frac { a + b } { 2 } \int _ { a } ^ { b } f ( x ) d x.