Solveeit Logo

Question

Question: If \(\int _ { 0 } ^ { \pi } x f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x\) \(k\) is...

If 0πxf(cos2x+tan4x)dx\int _ { 0 } ^ { \pi } x f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x kk is

A

π2\frac { \pi } { 2 }

B

π\pi

C

π2- \frac { \pi } { 2 }

D

None of these

Answer

π\pi

Explanation

Solution

0πxf(cos2x+tan4x)dx=k0π/2f(cos2x+tan4x)dx\int _ { 0 } ^ { \pi } x f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x = k \int _ { 0 } ^ { \pi / 2 } f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x

By the property of definite integral

I=0πxf(cos2x+tan4x)dxI = \int _ { 0 } ^ { \pi } x f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x …..(i)

=0π(πx)f(cos2x+tan4x)dx= \int _ { 0 } ^ { \pi } ( \pi - x ) f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x …..(ii)

Adding (i) and (ii), we have

2I=π0πf(cos2x+tan4x)dx2 I = \pi \int _ { 0 } ^ { \pi } f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x

2I=2π0π/2f(cos2x+tan4x)dx2 I = 2 \pi \int _ { 0 } ^ { \pi / 2 } f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x

I=π0π/2f(cos2x+tan4x)dxI = \pi \int _ { 0 } ^ { \pi / 2 } f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x

On comparing with given integral, we get

k=πk = \pi.