Question
Question: If \(\int _ { 0 } ^ { \pi } x f \left( \cos ^ { 2 } x + \tan ^ { 4 } x \right) d x\) \(k\) is...
If ∫0πxf(cos2x+tan4x)dx k is
A
2π
B
π
C
−2π
D
None of these
Answer
π
Explanation
Solution
∫0πxf(cos2x+tan4x)dx=k∫0π/2f(cos2x+tan4x)dx
By the property of definite integral
I=∫0πxf(cos2x+tan4x)dx …..(i)
=∫0π(π−x)f(cos2x+tan4x)dx …..(ii)
Adding (i) and (ii), we have
2I=π∫0πf(cos2x+tan4x)dx
⇒ 2I=2π∫0π/2f(cos2x+tan4x)dx
⇒ I=π∫0π/2f(cos2x+tan4x)dx
On comparing with given integral, we get
k=π.